跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊博宇
研究生(外文):Bo-Yu Yang
論文名稱:希爾伯特黃轉換應用於風扇的破壞檢測分析
論文名稱(外文):Hilbert Huang Transform applied to the fan damage detecting analysis
指導教授:王昭男王昭男引用關係
指導教授(外文):Chao-Nan Wang
口試委員:劉德源謝傳璋
口試委員(外文):Der-Yuan LiouChuan-Cheung Tse
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:55
中文關鍵詞:希爾伯特黃轉換經驗模態分解法本質模態函數風扇破壞檢測
外文關鍵詞:HHTcooling fanstatic unbalancedamage detecting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文針對電腦風扇葉片缺損的振動特徵,利用希爾伯特-黃轉換 (Hilbert-Huang Transform, HHT)進行分析與檢測。HHT是一種適用於非平穩與非線性訊號的時頻分析工具,其分析流程首先將待分析訊號用經驗模態分解法(Empirical Mode Decomposition,EMD)分解出數個本質模態函數 (Intrinsic Mode Functions, IMFs)。其次再利用Hilbert轉換(Hilbert Transform, HT)求得該待測訊號之瞬時頻率、瞬時振福,進而建立兼具時-頻-能量三者的分佈圖,稱為希爾伯特時頻譜(Hilbert Spectrum)。文中利用此數據,將風扇旋轉頻率上之平均能量除以振動總能量定義為損傷程度,以此作為破壞檢測指標之一。此外並比較不同破壞程度之希爾伯特時頻譜與偏度之歐式距離當作另一個破壞檢測指標。實驗部分將風扇分成無損壞、輕微損壞及嚴重損壞三種情況,分別量測並分析其希爾伯特時頻譜,再計算其診斷指標,用以判斷其破壞程度,依據分析結果:以平均能量除以振動總能量為診斷指標其準確度為87.5%;以不同破壞程度之希爾伯特時頻譜與偏度之歐式距離為診斷指標,轉速為3100(RPM)之風扇其準確度為85.42%,轉速為2500(RPM)之風扇其準確度為58.33%,轉速為2000(RPM)之風扇其準確度為60.42%。

The current study investigates the property of vibration on the damaged cooling fans via Hilbert-Huang Transform (HHT) method. HHT is a time-frequency analysis tool commonly used to test the nonstationary and nonlinear signals. HHT consists of two procedures when applied to the analysis: (a) The utilization of Empirical Mode Decomposition (EMD) to extract Intrinsic Mode Functions (IMFs) from signals to be processed. (b) The utilization of Hilbert Transform (HT) to obtain Instantaneous frequency and Instantaneous amplitude from signals to be processed. Base on data, the degree of damage is defined as the average energy of fan rotation frequency divided by total energy of vibration. The degree of damage, thus, is used as the indicator for damage detecting. Being classified into undamaged, slightly damaged and seriously damaged, the cooling fans with different classification are compared via Hilbert spectrum to fulfill the damage detecting in the current study. According to the analysis, by considering the result of average energy of fan rotation frequency divided by total energy of vibration as the indicator for damage detecting, the accuracy is 87.5%. With the indicator for damage detecting defined as the distance between Hilbert spectrum of different classification of cooling fans and skewness, the accuracy is 85.42% when the rotation speed of cooling fan is 3100(RPM), 58.33% when the rotation speed of cooling fan is 2500(RPM), and 60.42% when the rotation speed of cooling fan is 2000(RPM).

摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究內容及大綱 5
第二章 HHT基礎理論 6
2.1 瞬時頻率與解析訊號 6
2.2 希爾伯特黃轉換(Hilbert-Huang Transform, HHT) 13
2.2.1 本質模態函數(Intrinsic Mode Functions, IMF) 13
2.2.2 經驗模態分解法(Empirical Mode Decomposition, EMD) 14
2.2.3 希伯特頻譜 18
2.3 總體經驗模態分解法(Ensemble EMD,EEMD) 18
2.4 遮罩訊號法(MASK SIGNAL) 20
2.5 希爾伯特黃轉換之特性 21
第三章損壞診斷指標 23
3.1 旋轉頻率之能量比值(指標一) 23
3.2 相似度(指標二) 24
3.2.1 頻譜之歐式距離 24
3.2.2 偏度(skewness)之歐式距離 25
第四章 實驗設備與系統架構 26
4.1 實驗設備與流程 26
4.2 訊號量測儀器 27
4.3 訊號量測過程 29
第五章 實驗設計與結果分析 32
5.1 實驗設計 32
5.2 各轉速風扇與其指標 33
5.2.1 轉速3100(RPM)風扇 33
5.2.2 轉速2000(RPM)風扇 37
5.2.3 轉速2000(RPM)風扇 40
5.3 以各特徵設立診斷指標 44
5.3.1 以c值為特徵設立診斷指標 44
5.3.2 以頻譜相似度為特徵設立診斷指標 46
第六章 結論及未來展望 51
6.1 結論 51
6.2 未來展望 52
參考文獻 53


[1]X. Tian , Hewlett-Packard Co., "Cooling Fan Reliability: Failure Criteria, Accelerated Life Testing, Modeling and Qualification." ,Reliability and Maintainability Symposium, pp.380-384. , 2006.
[2]C. W. Lin, "希爾伯特黃轉換於樑上之破壞檢測分析", 台灣大學工程科學及海洋工程學系, 碩士論文, 2010.
[3]Z Hameed, Y. S Hong, Y. M Cho, S. H Ahn ,C. K Song, "Condition monitoring and fault detection of wind turbines and related algorithms: A review. " ,Vol.13, Issue 1, pp.1-39. , 2009.
[4]B. K. N RAO, "Handbook of Condition Monitoring. ", Elsevier Science ,1996.
[5]C. L. Lee, "音射定位法於岩石材料之應用", 國立成功大學資源工程學系, 碩士論文, 2003.
[6]L. Lin, W. Lu, F. Chu, "Application of AE techniques for the detection of wind turbine using Hilbert-Huang transform.", Prognostics and Health Management Conference, pp.1-7.,2010.
[7]A. G. Dutton, "Thermoelastic stress measurement and acoustic emission monitoring in wind turbine blade testing." ,European Wind Energy Conference, pp.22-25., 2004.
[8]F. Hahn, C. W. Kensche, R. J. H. Paynter, A. G. Dutton, C. Kildegaard and J. Kosgaard, " Design, Fatigue Test and NDE of a Sectional Wind Turbine Rotor Blade. Journal of Thermoplastic Composite Materials ",Vol.15, no. 3 ,pp.267-277., 2002.
[9]N. Roy, R. Ganguli, " Helicopter rotor blade frequency evolution with damage growth and signal processing. ", Journal of Sound and Vibration , Vol.283 , Issue 3-5 ,pp. 821-851. 2005.
[10]S. Kumar, N. Roy, R. Ganguli, " Monitoring low cycle fatigue damage in turbine blade using vibration characteristics. ",Mechanical Systems and Signal Processing , Vol. 21, Issue 1, pp. 480–501., 2007.
[11]J. T. Sawicki, X. Wu, G. Y. Baaklini, , A. L. Gyekenyesi, "Vibration-based crack diagnosis in rotating shafts during acceleration through resonance. " Proceedings of SPIE,Vol. 5046, Issue 1, 2003.
[12]T. R. Babu, S. Srikanth, A.S. Sekhar, "Hilbert–Huang transform for detection and monitoring of crack in a transient rotor." ,Mechanical Systems and Signal Processing ,Vol.22, Issue 4,pp.905–914,2008.
[13]Q. Miao, M. Azarian, M. Pecht, " Cooling Fan Bearing Fault Identification Using Vibration Measurement. " ,Prognostics and Health Management (PHM),pp.1-5.,2011
[14]C. K. Cheng, P. H. Chen , A. Liu , L. M. Chen, "Defect Type Recognition System for Wind Turbine by Subtractive Clustering. " ,Intelligent System Design and Engineering Application (ISDEA),pp.1404 - 1408.,2012.
[15]J. W. Cooley, J. W. Turkey, "An Algorithm for the Machine Calculation of Complex Fourier Series ", Mathematics of Computation, Vol. 19, Issue 90, pp. 297-201., 1965
[16]S. Qian, D. Chen, "Joint time-frequency analysis : methods and applications", Prentice Hall, 1996
[17]Y. Meyer, "Wavelets : algorithms & applications ", Philadelphia : Society for Industrial and Applied Mathematics, 1993
[18]N. E. Huang, S. S. Shen, "The Hilbert-huang Transform And Its Applications", World Scientific Pub Co. Pte. Ltd., 2005
[20]K. Y. Chen , H. C. Yeh, S. Y. Su, C. H. Liu, N. E. Huang, "Anatomy of plasma structures in an equatorial spread F event. " , Geophysical Research Letters, Vol. 28, Issue 16, pp. 3107-3110., 2001
[21]R.W. Komm, F. Hill, R. Howe, " Empirical mode decomposition and Hilbert analysis applied to rotation residuals of the solar convection zone. " , The Astrophysical Journal, Vol.558, Issue 1, pp 428-441., 2001
[22]N. E. Huang, Z. Shen , S. R. Lomg , M. C. Wu , S. H. Shih, Q. Zheng, C. C. Tung, H. H. Liu, "The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. " ,Proceedings of the Royal Society A, Vol.454, No.1971, pp 903-995, 1998
[23]L. Cohen, "Time-Frequency Analysis.", Prentice Hall PTR, Englewood Cliffs, 1995
[24]M. Schwartz , W. R. Bennett, S. Stein, "Communications Systems and Techniques. ", New York, McGraw-Hill.,1966.
[25]S. O. Rice, "Mathematical Analysis of Random Noise. ", Bell System Technical Journal, Vol. 23 , Issue 3 ,pp. 282-310, 1994
[26]D. Gabor, " Communication Theory and Physics. ", IEEE Transactions on Information Theory, Vol. 1, No. 1, pp. 48-59, 1953
[27]E. Bedrosian, "A Product Theorem for Hilbert Transforms. ", Proceedings of the IEEE, Vol.51, No. 5, pp. 868-869., 1963.
[28]N. E. Huang, Z. Shen, R. S. Long, "A new view of nonlinear water waves – the Hilbert spectrum. ", Annual Review of Fluid Mechanics, Vol.31, pp. 417-457., 1999.
[29]N. E. Huang, M. L. Wu, S. R. Long, S. S. Shen, W. D. Qu, P. Gloersen, K. L. Fan, "A confidence limit for the empirical mode decomposition and the Hilbert spectral analysis. " , Proceedings of the Royal Society, London, Vol. 459A, pp.2317-2345, 2003
[30]Z. Wu , N. E. Huang, " Ensemble empirical mode decomposition: A noise-assisted data analysis method.", Advances in Adaptive Data Analysis, Vol. 1, Issue 1, pp. 1-41, 2009
[31]R. Deering, J. F. Kaiser, "The use of a masking signal to improve empirical mode decomposition." , Acoustics Speech and Signal Processing, Proceedings. (ICASSP ''05). IEEE International, Vol. 4, Issue 4, pp.485-488., 2005.
[32]N. Senroy, S. Suryanarayanan, "Two Techniques to Enhance Empirical Mode Decomposition for Power Quality Applications. ", Power Engineering Society General Meeting, 2007. IEEE, pp.1-6., 2007.
[33]N. Senroy, S. Suryanarayanan, P. F. Ribeiro, "An Improved Hilbert–Huang Method for Analysis of Time-Varying Waveforms in Power Quality.", IEEE Transactions on Power Systems, Vol. 22, pp. 1843-1850, 2007.
[34]H. Zhang, Q. Gai, "Research on Properties of Empirical Mode Decomposition Method. " , Intelligent Control and Automation( WCICA 2006.) The Sixth World Congress, Vol.2, pp.10001-10004, 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top