(18.204.227.34) 您好!臺灣時間:2021/05/19 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張怡萱
研究生(外文):Yi-Hsuan Chang
論文名稱:疫病菌外泌蛋白OPEL在植物反應所扮演的角色
論文名稱(外文):The role of OPEL, a secretory protein of Phytophthora parasitica, involved in induction of plant immunity
指導教授:劉瑞芬劉瑞芬引用關係
口試委員:李敏惠鄭秋萍賴爾珉林乃君
口試日期:2013-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:OPELPAMP-triggered immunity (PTI)Phytophthora parasiticaSystemic acquired resistance (SAR)
外文關鍵詞:OPELPAMP-triggered immunity (PTI)Phytophthora parasiticaSystemic acquired resistance (SAR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
疫病菌屬 (Phytophthora) 中有許多種類 (species) 皆屬於重要經濟作物的病原菌,往往造成農業重大損失。Phytophthora與植物交互作用過程所涉及的分子機制非常複雜,近年來的研究發現Phytophthora含有可引發植物免疫反應的分子如pathogen-associated molecular patterns (PAMPs) 及avirulence effectors等,這些分子被植物辨識到後所引發之植物免疫反應分別為PAMP-triggered immunity (PTI) 以及effector-triggered immunity (ETI),但仍有許多putative effectors的功能尚待研究釐清,本研究的目的即是探討一未知功能的疫病菌 (Phytophthora parasitica)外泌性蛋白OPEL的功能與特性。在OPEL N端具有一段訊號肽,並有三個保守性區域分別為thaumatin-like domain (Thau)、glycine-rich domain (GR) 及glycosyl hydrolase domain (GH) 。OPEL為卵菌特有之基因,其同源性序列僅在Phytophthora spp.、Albugo、Hyaloperonospora arabidopsidis及Pythium被發現。即時定量聚合酶鏈鎖反應 (real-time quantitative reverse transcriptase-PCR) 分析顯示,OPEL在疫病菌不同生長階段皆有表現,但在感染植物後表現量顯著提升。為了瞭解其在疫病菌與植物交互作用所扮演的角色,我們利用E. coli表現OPEL重組蛋白以進行後續分析,結果顯示將OPEL注射入菸草葉片會引發癒傷葡聚醣堆積 (callose deposition)、產生活性氧分子 (reactive oxygen species, ROS) 以及誘導水楊酸 (salicylic acid, SA) 和PTI防禦反應相關基因表現。除此之外,經由OPEL處理之菸草可增加系統葉對Tobacco mosaic virus (TMV) 之抗性。而為了進一步了解是OPEL中哪個功能性區域可引發植物抗病反應,我們同樣利用E. coli表現Thau、GR、GH及GR+GH重組蛋白,研究結果顯示GH及GR+GH與OPEL結果相似,皆可引發植物累積癒傷葡聚醣及產生H2O2。綜合上述結果顯示OPEL具有既可引發植物基礎防禦反應PTI,也可誘導植物產生後天系統性抗性 (systemic acquired resistance, SAR) 之獨特性質,而glycosyl hydrolase domain則是引發抗病反應所必須。

The genus Phytophthora includes more than 100 species, with many of them notorious pathogens of economically important crops. Interaction between Phytophthora pathogens and plant hosts involves the exchange of complex molecular signals from both sides. Recent studies in Phytophthora have led to the identification of some pathogen-associated molecular patterns (PAMPs) as well as many avirulence effectors, which are known to elicit PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, there are still numerous putative effectors with unknown function. In this study, we report the functional characterization of OPEL, a secretory protein of Phytophthora parasitica, which contains a signal peptide in the N-terminus and three other conserved domains including a thaumatin-like domain (Thau), a glycine-rich domain (GR), and a glycosyl hydrolase domain (GH). Homologs of OPEL were identified only in Oomycetes, including Phytophthora spp., Albugo, Hyaloperonospora arabidopsidis, and Pythium but not fungi and other organisms. Analysis by quantitative reverse transcriptase-PCR indicated that OPEL is expressed throughout development of P. parasitica, but is especially highly induced following the infection on plant. To characterize its function, we obtained OPEL recombinant proteins from E. coli. Infiltration of the recombinant protein into leaves of tobacco (Nicotiana tabacum) resulted in callose deposition, production of reactive oxygen species (ROS), and induced expression of salicylic acid-responsive defense genes. Moreover, when the systemic leaves of the OPEL-treated tobacco plants were challenged with Tobacco mosaic virus (TMV), the number of local lesions caused by TMV infection was significantly reduced compared to the control plants. To identify conserved domain(s) which is involved in elicitation of plant immunity, we obtained recombinant proteins representing Thau, GR, GH, or GR+GH, respectively, from E. coli and analyze their activity. The results showed that GH and GR+GH could induce callose deposition and ROS production in a level similar to those induced by OPEL recombinant protein. These results demonstrate the unique characteristics of OPEL which can induce plant defense response and systemic resistance in tobacco. Moreover, the glycosyl hydrolase domain plays an essential role for OPEL to elicit plant immunity.

中文摘要 I
Abstract III
目 錄 V
壹、前 言 1
1. 植物防禦反應 1
1.1 植物免疫系統 1
1.2 植物防禦反應機制 1
1.3 全株性系統性抗病(systemic acquired resistance, SAR) 2
1.4 植物防禦反應相關標記基因 (marker genes) 3
2. 疫病菌Phytophthora parasitica 5
3. 疫病菌之外泌蛋白 6
3.1 Cytoplastic effectors 7
3.2 Apoplastic effectors 7
研究動機 10
貳、材料與方法 11
1. 供試植株及菌種來源 11
1.1 植物材料及生長條件 11
1.2 病原菌來源及保存 11
2. 多序列比對分析及功能性區域預測 11
2.1 蛋白功能性區域預測以及親緣演化樹分析 11
3. 以簡併式引子對增幅不同種疫病菌之OPEL基因 12
3.1 Genomic DNA抽取 12
3.2 聚合酶鏈鎖反應增幅不同種疫病菌之OPEL基因 13
4. OPEL對於Phytophthora parasitica 致病力之影響分析 13
4.1 表現載體構築 13
4.2 農桿菌轉殖法 (Agrobacterium transformation) 14
4.3 農桿菌注入法 (Agroinfiltration) 14
4.4 抽取植物葉片全蛋白 15
4.5 西方轉漬法 (Western blot analysis) 15
4.6 疫病菌接種 15
5. OPEL於Phytophthora parasitica 不同生長階段之RNA表現量分析 16
5.1 疫病菌total RNA抽取 16
6. OPEL在植物細胞的表現位置分析 18
6.1 OPEL-GFP表現載體構築 18
6.2 以雷射掃描式共軛焦顯微鏡 (Laser Scanning Confocal Microscope) 觀察蛋白分布位置 19
7. 以大腸桿菌表現OPEL蛋白 19
7.1 OPEL全長蛋白表現載體之構築 19
7.2 OPEL不同功能性區域蛋白表現載體構築 20
7.3 大腸桿菌轉型試驗 20
7.4 OPEL全長蛋白表現及可溶性測試 20
7.5 OPEL不同功能性區域蛋白表現及可溶性測試 21
7.6 OPEL重組蛋白純化 21
7.7 OPEL不同功能性區域蛋白純化 22
7.8 膠體過濾法 (Gel filtration) 22
8. 植物抗病反應分析 22
8.1 抗病反應相關基因表現分析 22
8.2 癒傷葡聚醣堆積分析 (Callose deposition assay) 24
8.3 Reactive Oxygen Species (ROS) 染色 24
8.4 Tobacco mosaic virus (TMV)接種 25
叁、結 果 26
1. 序列分析及功能性區域預測 26
2. 疫病菌 (Phytophthora spp.)外泌蛋白OPEL胺基酸序列與其他物種同源性序列之親源演化樹分析 26
3. OPEL基因普遍存在於不同種之疫病菌中 27
4. OPEL在疫病菌感染菸草後會大量誘導表現 27
5. OPEL-GFP位於植物細胞間隙 28
6. 以agroinfiltration表現OPEL蛋白可提升菸草對於疫病菌之抗病性 28
7. OPEL重組蛋白之表現與純化 29
8. OPEL重組蛋白可導致Nicotiana tacabum葉部細胞死亡 30
9. OPEL重組蛋白可引發菸草癒傷葡聚糖堆積 30
10. OPEL重組蛋白可引發H2O2累積 30
11. 免疫反應相關基因表現分析 31
12. Tobacco mosaic virus (TMV) 接種 31
13. 表現及純化OPEL不同功能性區域之重組蛋白 32
14. Glycosyl hydrolase domain可引發菸草癒傷葡聚醣累積及產生活性氧分子 32
肆、討 論 33
1 Phytophthora parasitica將OPEL外泌至植物細胞間隙 33
2 OPEL在疫病菌與菸草交互作用所扮演的角色 33
3 OPEL引發菸草PTI及SAR 34
4 Glycosyl hydrolase domain為引發植物抗病反應所必需 36
5 結語…………. 38
伍、參考文獻 39
陸、附 表 49
柒、附 圖 52


1.安寶貞. 2001. 洋蘭保護-疫病. 行政院農委會動植物防疫檢疫局. p.12-21.
2.蔡雲鵬. 1991. 植物病害名彙 (三版). 植保學會及植病學會. p.604.
3.顏豪志. 2001. 疫病菌分泌性蛋白質OPEL選殖與特性研究. 國立臺灣大學植物病理學硏究所碩士論文.
4.Armstrong, M. R., Whisson, S. C., Pritchard, L., Bos, J. I. B., Venter, E., Avrova, A. O., Bo‥hme, U., Brooks, K., Cherevach, I., Hamlin, N., White, B., Fraser, A., Lord, A., Quail, M. A., Churcher, C., Hall, N., Berriman, M., Huang, S., Kamoun, S., Beynon, J. L., and Birch, P. R. J. 2005. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proceedings of the National Academy of Sciences of the United States of America 102: 7766-7771.
5.Bernard, H., and Gideon, D. 1997. Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology 7: 637-644.
6.Bisson, M. M., Bleckmann, A., Allekotte, S., and Groth, G. 2009. EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochemical Journal 424: 1-6.
7.Bonshtien, A., Lev, A., Gibly, A., Debbie, P., Avni, A., and Sessa, G. 2005. Molecular properties of the Xanthomonas AvrRxv effector and global transcriptional changes determined by its expression in resistant tomato plants. Molecular Plant-Microbe Interactions 18: 300-310.
8.Bostock, R. M. 2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annual Review of Phytophathology 43: 545-580.
9.Bozkurta, T. O., Schornacka, S., Wina, J., Shindob, T., Ilyasb, M., Olivaa, R., Canoa, L. M., Jonesa, A. M. E., Huitemaa, E., Renier, A. L. van der Hoornb, and Kamoun, S. 2011. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proceedings of the National Academy of Sciences of the United States of America 108: 20832-20837.
10.Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., and Nurnberger, T. 2002. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. The EMBO Journal 21: 6681-6688.
11.Cohen, Y. 1994. 3-Aminobutyric acid induces systemic resistance against Peronospora tabacina. Physiological and Molecular Plant Pathology 44: 273-288.
12.Dann, E. K. and Deverall, B. J. 1996. Induced systemic resistance in cucumber in response to 2,6-dichloro-isonicotinic acid and pathogens. Australasian Plant Pathology 25: 199-204.
13.Darrell, D., Julie, A., Normand, B., and Jurgen, S. 2002. A new family of plant transcription factors displays a novel ssDNA-binding surface. Nature Structural Biology 9: 512-517.
14.Darvill, A. G., and Albersheim, P. 1984. Phytoalexins and their elicitors-a defense against microbial infection in plants. Annual Review of Plant Physiology and Plant Molecular Biology 35: 243-275.
15.Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G. S., Muthukrishnan, S., and Datta, S. K. 1999. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theoretical and Applied Genetics 98: 1138-1145.
16.Day, R. B., Shibuya, N., and Minami, E. 2003. Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor. Biochimica et Biophysica Acta 1625: 261-268.
17.Dixon, R. A. 2001. Natural products and plant disease resistance. Nature 411: 843-847.
18.Durrant, W. E., Dong, X. 2004. Systemic acquired resistance. Annual review of phytopathology 42: 185-209.
19.Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E., and Jones, J. D. 2000. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12: 963-977.
20.Erwin, D. C., and Ribeiro, O. K. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society Press, pp. 562 .
21.Fagoaga, C., Rodrigo, I., Conejero, V., Hinarejos, C., Tuset, J. J., Arnau, J., Pina, J. A. , Navarro, L., and Pena, L. 2001. Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Molecular Breeding 7: 175-185.
22.Gaulin, E., Drame, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., Khatib, M., Mazarguil, H., Villalba-Mateos, F., Kamoun, S., Mazars, C., Dumas, B., Bottin, A., Esquerre-Tugaye, M. T., Rickauer, M. 2006. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18: 1766-1777.
23.Glazebrook, J., Rogers, E. E., and Ausubel, F. M. 1996. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143: 973-982.
24.Gu, Y. Q., Wildermuth, M. C., Chakravarthy, S., Loh, Y. T., Yang, C., He, X., Han, Y., and Martin, G. B. 2002. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14: 817-831.
25.Guillaume, H., and Philippe, T. et M. O. 2012. PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnology, Agronomy, Society and Environment 16: 257-268.
26.Guo, X. and Stotz, H. U. 2007. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Molecular Plant-Microbe Interactions 20: 1384-1395.
27.Gust, A. A., Biswas, R., Lenz, H. D., Rauhut, T., Ranf, S., Kemmerling, B., Gotz, F., Glawischnig, E., Lee, J., Felix, G., and Nurnberger, T. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. The Journal of Biological Chemistry 282: 32338-32348.
28.Hanh, P. N., Suma, C., Andre, C. V, Heather L. M., Lirong, Z., Hitoshi, N., Duck-Hwan, P., Alan C., and Gregory B. M. 2010. Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Molecular Plant-Microbe Interactions 8: 991-999.
29.Hanson, M. R., and Kohler, R. H. 2001. GFP imaging: methodology and application to investigate cellular compartmentation in plants. Journal of Experimental Botany 52: 529-539.
30.Heese, A., Hann, D. R., Gimenez-Ibanez, S., Jones, A. M., He, K. Li, J., Schroeder, J. I., Peck, S. C., and Rathjen, J. P. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America 104: 12217-12222.
31.Hui, C., Bowling, S.A., Gordon, A. S., and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive toiInducers of systemic acquired resistance. Plant Cell 6: 1583-1592.
32.Jocelyn, K. C. R., Ham, K. S., Darvill, A. G., and Albersheim, P. 2002. Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counterdefense mechanism by plant pathogens. Plant Cell 14: 1329-1345.
33.Jones J. D. G. and Dangl J. L. 2006. The plant immune system. Nature 444: 323-329.
34.Kamoun S. 2006. A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review of Phytopathology 44: 41-60.
35.Kamoun, S, Klucher, K. M., Coffey, M. D., and Tyler, B. M. 1993. A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Molecular Plant-Microbe Interactions 6: 573-581.
36.Keller, H., Blein, J. P., Bonnet, P., and Ricci, P. 1996. Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco. Plant Physiology 110: 365-376.
37.Kulye, M., Liu, H., Zhang, Y., Zeng, H., Yang, X., and Qiu, D. 2012. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defense-related genes and systemic acquired resistance in tobacco. Plant, Cell and Environment 10: 1365-3040.
38.Kunkel, B. N., and Brooks, D. M. 2002. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5: 325-331.
39.Lloyd, M. Y. 1994. Elicitins from Phytophthora and basic resistance in tobacco. Proceedings of the National Acedemy of Sciences of the United States of America 92: 4088-4094.
40.Loon, L. C. Van and Strien, E. A. Van. 1999. The families of pathogenesis-related protein, their activities, and comparative analysis of PR-1 type protein. Physiological and Molecular Plant Pathology 55: 85-97.
41.Mateos, F. V., Rickauer, M., and Esquerre-Tugaye, M. T. 1997. Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Molecular Plant-Microbe Interactions 10: 1045-1053.
42.Mishina, T. E., Zeier, J., 2007. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant Journal 50: 500-513.
43.Mosblech, A., Thurow, C., Gatz, C., Feussner, I., and Heilmann, I. 2011. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant Journal 65: 949-957.
44.Mysore, K. S., Crasta, O. R., Tuori, R. P., Folkerts, O., Swirsky, P. B. and Martin, G. B. 2002. Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant Journal 32: 299-315.
45.Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T., and Jones, J. D. 2004. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiology 135: 1113-1128.
46.Peng, J. L., Dong, H. S., Dong, H. P., Delaney, T. P., Bonasera, J. M., and Beer, S. V. 2003. Harpin-elicited hypersensitive cell death and pathogen resistance require the NDR1 and EDS1 genes. Physiological and Molecular Plant Pathology 62: 317-326.
47.Penninckx, I. A., Thomma, B. P., Buchala, A., Metraux, J. P., and Broekaert, W. F. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103-2113.
48.Pitzschke, A., Schikora, A., and Hirt, H. 2009. MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology 12: 421-426.
49.Qutob, D., Kamoun, S., and Gijzen, M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant Journal 32: 361-373.
50.Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340-58.
51.Seidl, M. F., Van den Ackerveken G., Govers F., Snel, B. 2011. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. Plant Physiology 155: 628-644.
52.Sejalon, D. N., Villalba, M. F., Bottin, A., Rickauer, M., Dargent, R., and Esquerr’e Tugay’e M. T. 1997. Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var. nicotianae, a fungal pathogen of tobacco. Phytopathology 87: 899-909.
53.Shah, J., Kachroo, P., Nandi, A., and Klessig, D. F. 2001. A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant Journal 25: 563-574.
54.Shah, J., Tsui, F., and Klessig, D. F. 1997. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Molecular Plant-Microbe Interactions 10: 69-78.
55.Shan, W., Cao, M., Leung, D., and Tyler, B. M. 2004. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Molecular Plant-Microbe Interactions 17: 394-403.
56.Singh, N. K., Bracker, C. A., Hasegawa, P. M., Handa, A. K., Buckel, S., Hermodson, M. A., Pfankoch, E., Regnier, F. E., and Bressan, R. A. 1987. Characterization of osmotin: A thaumatinlike protein associated with osmotic adaptation in plant cells. Plant Physiology 85: 529-536.
57.Stassen, J. H. M. and Guido Van den Ackerveken. 2011. How do oomycete effectors interfere with plant life. Current Opinion in Plant Biology 14: 407-414.
58.Steczkiewicz, K., Knizewski, L., Rychlewski, L., Ginalski, K. 2010. TOS1 is circularly permuted 1,3-beta-glucanase. Cell Cycle 9: 201-204.
59.Takemoto, D., Hardham, A. R., Jones, D. A. 2005. Differences in cell death induction by Phytophthora Elicitins are determined by signal components downstream of MAP kinase kinase in different species of Nicotiana and cultivars of Brassica rapa and Raphanus sativus. Plant Physiology 138: 1491-1505.
60.Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.
61.Tian, M., Huitema, E., da Cunha L., Torto-Alalibo, T., and Kamoun, S. 2004. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. The Journal of Biological Chemistry 279: 26370-26377.
62.Torto, T., Li S., Styer, A., Huitema, E., Testa, A., Gow, N. A., van West, P., and Kamoun, S. 2003. EST mining and functional expression assays identify extracellular effector proteins from Phytophthora. Genome Research 13: 1675-1685.
63.Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H., Aerts, A., et al. 2006. Phytophthora genomes sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313: 1261-1266.
64.Vandenabeele, S., Van Der Kelen K., Dat, J., Gadjev, I., Boonefaes, T., Morsa, S., Rottiers, P., Slooten L., Van Montagu M., Zabeau, M., Inze D., and Van Breusegem F. 2003. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proceedings of the National Academy of Sciences of the United States of America 100: 16113-16118.
65.White, R. F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99: 410-412.
66.Wu, H. M., Liu, S. W., Hsu, M. T., Hung, C. L., Lai, C. C., Cheng, W. C., Wang, H. J., Li, Y. K., and Wang, W. C. Structure, mechanistic action, and essential residues of a GH-64 enzyme, laminaripentaose-producing β-1,3-glucanase. 2009. Biological Chemistry 284: 26708-26715.
67.Xin, L., Yuelin, Z., Joseph, D. C., Yan, L., and Xinnian, D. 1999. Identification and Cloning of a Negative Regulator of Systemic Acquired Resistance, SNI1, through a Screen for Suppressors of npr1-1. Cell 98: 329-339.
68.Yan, H. Z., and Liou, R. F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genetics and Biology 43: 30-438.
69.Zhang, W., Yang, X., Qiu, D., Guo, L., Zeng, H., Mao, J., and Gao, Q. 2010. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Molecular Biology Reports 38: 2549-2556.
70.Zhang, Y., Xu, S., Ding, P., Wang, D., Cheng, Y. T., He, J., Gao, M., Xu, F., Li, Y., Zhu, Z., Li, X., and Zhang, Y. 2010. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences of the United States of America 107: 18220-18225.
71.Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T., and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation. Cell 125: 749-760.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top