跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/29 13:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭文鈺
研究生(外文):Wen-Yu Kuo
論文名稱:阿拉伯芥伴護蛋白CPN20具鐵離子鑲嵌能力活化葉綠體之鐵超氧歧化酶
論文名稱(外文):CPN20 as an iron chaperone mediates chloroplastic FeSODs activation in Arabidopsis
指導教授:靳宗洛靳宗洛引用關係
指導教授(外文):Tsung-Luo Jinn
口試委員:林秋榮林讚標林彩雲顏宏真葉國禎張孟基
口試日期:2013-01-04
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:192
中文關鍵詞:超氧歧化酶鐵超氧歧化酶伴護蛋白20鐵離子鑲嵌蛋白葉綠體阿拉伯芥
外文關鍵詞:SODFeSODCPN20iron chaperonechloroplastArabidopsis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超氧歧化酶是阿拉伯芥葉綠體中主要的抗氧化酵素。其中唯一可以測得活性的鐵超氧歧化酶,是由位於基質中的FE SUPEROXIDE DISMUTASE 1 (FSD1)所賦予,然而位於類囊膜及擬核中之FSD2及FSD3的活性則無法測得。阿拉伯芥FSD2及FSD3基因為葉綠體早期發育所必須,當同時剔除兩基因後,會中止葉綠體的發育。鐵超氧歧化酶需鐵離子輔酶的嵌合才具有活性,然而其如何獲取得鐵離子,至今依舊未知。我們利用逆向色層分析法、膠體過濾法並配合液態層析質譜儀篩選出CHAPERONIN 20 (CPN20),其可能參與鐵超氧歧化酶的活化。利用酵母菌雙雜合系統及螢光共振能量轉移系統,證實了CPN20與FSD1具蛋白質交互作用。在體外實驗中,CPN20可提升FSD1、FSD2及FSD3超氧歧化酶的活性,確定CPN20對於鐵超氧歧化酶之活化具普遍性的輔助效果。經由感應耦合電漿質譜分析,發現CPN20擁有鐵離子並且可以提升FSD1之鐵離子輔酶的嵌合,推論CPN20能為FSD1鐵鑲嵌之輔助蛋白。我們的體內實驗結果也顯示,無論野生型CPN20或是喪失其伴護蛋白功能之突變型CPN20基因,皆可以提升FSD1的活性,顯示CPN20此一新功能與其所詳知的蛋白質伴護系統之功能不同。此外,在大量表現CPN20之轉植株中,FSD1蛋白質之表現量及活性皆提升,而CPN60蛋白質表現量並無變化;利用病毒誘導基因靜默法降低番茄CPN20基因表現量後,鐵超氧歧化酶活性亦隨之下降。綜合本研究之結果,我們確立了伴護蛋白CPN20具鐵離子鑲嵌能力活化葉綠體中之鐵超氧歧化酶,此功能與其參與蛋白質伴護系統之功能截然不同,為一獨立之新功能。CPN20之研究成果對於鐵超氧歧化酶的活化機制、葉綠體中蛋白質伴護系統,以及葉綠體發育系統之間,提供了一個重要的連結。

Iron superoxide dismutases (FeSODs) are primary antioxidant enzymes in Arabidopsis thaliana chloroplasts. The stromal FE SUPEROXIDE DISMUTASE1 (FSD1) conferred the only detectable FeSOD activity, while the thylakoid membranes and nucleoids co-localized FSD2 and FSD3 double mutant showed chloroplast development arrested. FeSOD requires Fe cofactor for its activity, but how it is activated is unclear. In this study, we characterized the chloroplast-localized co-chaperonin CHAPERONIN 20 (CPN20) as a mediator of FeSOD activation by direct interaction. Reverse-phase high performance liquid chromatography, gel filtration chromatography and LC-MS/MS analyses were performed to identify CPN20 as a candidate to functionally interact with FSD1. Their physical interaction is demonstrated by yeast two-hybrid and fluorescence resonance energy transfer experiments. The relation between CPN20 and FeSOD was confirmed by in vitro experiments, which showed that CPN20 alone could enhance FSD1, FSD2 and FSD3 activity, suggesting a common role for CPN20 in FeSOD activation. CPN20 could bind Fe, and Fe binding to FeSOD was increased with CPN20 incubation analyzed by inductively coupled plasma mass spectrometry, suggesting CPN20 might act as an Fe chaperone for FeSOD. The in vivo results showing overexpressing CPN20 and mutants with defective co-chaperonin activity increased FSD1 activity, without changing chaperonin CPN60 protein level, and VIGS-induced downregulation of CPN20 also corresponding decreased FeSOD activity. Conclusively, our results implicate CPN20 as an Fe chaperone for FeSOD in chloroplasts, a role which is independent of its well-known function in the chaperonin system. The findings provide a link between the mechanisms of FeSOD activation, the chloroplast chaperonin system, and chloroplast development.

Abstract in Chinese.....................................VIII
Abstract in English.......................................IX
Abbreviations.............................................XI
Introduction...............................................1
Reactive oxygen species (ROS)..............................1
Superoxide dismutase (SOD).................................1
SOD genes in Arabidopsis chloroplasts......................3
Studies on SODs at different sites in chloroplasts.........5
Known metallochaperones for SODs activation................6
Objectives and current findings............................8
Materials and methods.....................................10
Plants, yeast strains and growth conditions...............10
Virus induced gene silencing in tomato....................10
Yeast two hybrid assay....................................11
RNA extraction and immunoblotting.........................11
Cellular extract preparation and SOD activity assays......12
Constructs................................................13
Protoplast preparation and transfection...................15
Recombinant protein purification and deactivation.........16
Iron binding tests........................................17
Reversed-phase HPLC, gel filtration and LC-MS/MS..........17
Accession numbers.........................................19
Statistical analysis......................................19
Results...................................................21
FSD1 confers the only detectable FeSOD activity in Arabidopsis chloroplasts..................................21
Arabidopsis fsd1 cellular extract facilitates FSD1 activation................................................22
CPN20 as an assisting factor in the activation of FSD1....23
CPN20 interacts with FSD1.................................25
CPN20 facilitates FSD1 activation in vitro................26
CPN20 binds iron and enhances its incorporation into FSD1......................................................27
CPN20 facilitates FSD1 activation in vivo.................27
CPN20 silencing decreases FeSOD activity ..........................................................28
CPN20 enhances FSD2 and FSD3 activities in vitro..........29
CPN20 functions independently of its co-chaperonin activity..................................................29
FSD1 is active in yeast Saccharomyces cerevisiae..........31
Discussion................................................33
Chloroplastic localization of FSD1........................33
CPN20 has a dual function.................................34
Regulations of CPN20 on FeSOD activity....................35
Transient interaction between CPN20 and FSD1..............37
Multiple activation pathways for SODs in different compartments..............................................38
SOD functions other than ROS disproportion................39
Known cases of iron chaperones............................41
Possible models for the role of CPN20 in FeSOD activation................................................41
Conclusions...............................................42
Perspectives..............................................43
1. Searching for other components involved in FeSOD activation................................................43
1.1 Factor(s) which activates FeSOD in the cytosol........43
1.2 Factors involved in the CPN20-dependent FeSOD activation mechanism.................................................44
2. Understanding the detail mechanism of CPN20 in FeSOD activation................................................44
2.1 The essential domains or residues of CPN20 required for FeSOD activation..........................................44
2.2 Iron binding capability of CPN20 and its effect on iron incorporation of FeSODs...................................45
2.3 Construction of the CPN20-knockdown lines with an inducible repression system...............................46
2.4 Effects of CPN20 overexpression on FSD2 and FSD3 mRNA, protein and activity levels, and vice versa...............46
2.5 Investigate the differences of chaperonin system and FeSOD activation mechanism via studying the effects of other chaperonin genes on FeSODs activation.....................48
3. Investigating the undiscovered functions of SOD other than superoxide dismutation activity......................49
Acknowledgments...........................................51
Figures and Tables........................................52
Figure 1. FSD1 activity and localization..................52
Figure 2. Sequence alignment of the N-terminal of FeSOD from different species.........................................54
Figure 3. Affinity purification of the GST-tagged FSD1, FSD2, FSD3 and CPN20......................................55
Figure 4. FSD1 activation by incubation with Fe and fsd1 leaf cellular extract.....................................57
Figure 5. Active and inactive FSD1 in affinity-purified Holo-FSD1 and Apo-FSD1....................................59
Figure 6. Activation of Holo- and Apo-FSD1 by incubation with desalted fsd1 cellular extract.......................61
Figure 7. Iron binding experiments........................62
Figure 8. FSD1 activation by incubation with Fe and fsd1 heated cellular extract...................................64
Figure 9. Flowchart of the identification of assisting factor(s) in Arabidopsis cellular extract.................65
Figure 10. Apo-FSD1 activation in the presence of fractions by reverse-phase HPLC and gel filtration chromatography...66
Figure 11. Sequence alignment of the CPN20 N and C domains and CPN10 among different species.........................68
Figure 12. CPN20 and FSD1 interaction ..........................................................70
Figure 13. FSD1 activation by CPN20 in vitro..............72
Figure 14. Effect of Tris buffer, various pH buffers and metal ions on Holo-FSD1 activity..........................74
Figure 15. CPN20 facilitated Apo-FSD1 activation in vitro.....................................................76
Figure 16. FSD1 transcript and activity levels in CPN20-overexpressed plants......................................77
Figure 17. FeSOD activity in CPN20-silenced plants........78
Figure 18. FSD2 and FSD3 activation by CPN20 in vitro.....79
Figure 19. Effect of CPN20 and mutants with defective co-chaperone activity on FSD1 activity.......................80
Figure 20. CSD1 activity and protein levels were not affected by co-expression of CPN20 and mutants with defective its co-chaperone activity.......................82
Figure 21. Activity and localization of Arabidopsis FSD1 gene expressed in yeast...................................83
Figure 22. Summary of CPN20 functions.....................85
Table 1. Primers used in this study.......................86
Table 2. Identified protein number in HPLC fractions identified by LC-MS/MS analysis...........................88
Table 3. Identified protein number in gel filtration fractions identified by LC-MS/MS analysis.................89
Table 4. Protein candidates identified by LC-MS/MS analysis..................................................90
Appendixes................................................91
Appendix 1. Schematic diagram represented the position of T-DNA insertion sites of fsd1, fsd2 and fsd3 requested from Mayouga et al. (2008).....................................91
Appendix 2. LC-MS/MS analysis of HPLC fractions...........92
Appendix 3. LC-MS/MS analysis of gel filtration fractions................................................134
Appendix 4. The CPN60 antibody cross-reacted with all the chloroplastic CPN60 subtypes and the affinity purified CPN20 without bacterial GroEL contamination....................172
References...............................................174

Abdel-Ghany SE, Burkhead JL, Gogolin KA, Andres-Colas N, Bodecker JR, Puig S, Penarrubia L, Pilon M. 2005a. AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Letters 579: 2307-2312.
Abdel-Ghany SE, Muller-Moule P, Niyogi KK, Pilon M, Shikanaic T. 2005b. Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. The Plant Cell 17: 1233-1251.
Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53: 1331-1341.
Arnesano F, Banci L, Bertini I, Martinelli M, Furukawa Y, O''Halloran TV. 2004. The unusually stable quaternary structure of human Cu,Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status. Journal of Biological Chemistry 279: 47998-48003.
Baginsky S, Gruissem W. 2006. Arabidopsis thaliana proteomics: From proteome to genome. Journal of Experimental Botany 57: 1485-1491.
Baneyx F, Bertsch U, Kalbach CE, van der Vies SM, Soll J, Gatenby AA. 1995. Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60. Journal of Biological Chemistry 270: 10695-10702.
Bannister WH, Bannister JV, Barra D, Bond J, Bossa F. 1991. Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radical Research Communications 1: 349-361.
Bertsch U, Soll J. 1995. Functional analysis of isolated cpn10 domains and conserved amino acid residues in spinach chloroplast co-chaperonin by site-directed mutagenesis. Plant Molecular Biology 29: 1039-1055.
Bertsch U, Soll J, Seetharam R, Viitanen PV. 1992. Identification, characterization, and DNA sequence of a functional "double" groES-like chaperonin from chloroplasts of higher plants. Proceedings of the National Academy of Sciences, USA 89: 8696-8700.
Beyer W, Imlay J, Fridovich I. 1991. Superoxide dismutases. Progress in Nucleic Acid Research and Molecular Biology 40: 221-253.
Bonshtien AL, Weiss C, Vitlin A, Niv A, Lorimer GH, Azem A. 2007. Significance of the N-terminal domain for the function of chloroplast cpn20 chaperonin. Journal of Biological Chemistry 282: 4463-4469.
Bowler C, Van Montagu M, Inze D. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83-116.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
Brown NM, Torres AS, Doan PE, O''Halloran TV. 2004. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Proceedings of the National Academy of Sciences 101: 5518-5523.
Brugiere S, Kowalski S, Ferro M, Seigneurin-Berny D, Miras S, Salvi D, Ravanel S, d''Herin P, Garin J, Bourguignon J et al. 2004. The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochemistry 65: 1693-1707.
Bulteau AL, O''Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI. 2004. Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305: 242-245.
Camacho-Carvajal MM, Wollscheid B, Aebersold R, Steimle V, Schamel WWA. 2004. Two-dimensional blue native/sds gel electrophoresis of multi-protein complexes from whole cellular lysates. Molecular and Cellular Proteomics 3: 176-182.
Choudhury SB, Lee JW, Davidson G, Yim YI, Bose K, Sharma ML, Kang S, Cabelli DE, Maroney MJ. 1999. Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase. Biochemistry 38: 3744-3752.
Chu CC, Lee WC, Guo WY, Pan SM, Chen LJ, Li HM, Jinn TL. 2005. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiology 139: 425-436.
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735-743.
Cohu CM, Abdel-Ghany SE, Reynolds KAG, Onofrio AM, Bodecker JR, Kimbrel JA, Niyogi KK, Pilon M. 2009. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant. Molecular Plant 2: 1336-1350.
Cohu CM, Pilon M. 2007. Regulation of superoxide dismutase expression by copper availability. Physiologia Plantarum 129: 747-755.
Corson LB, Strain JJ, Culotta VC, Cleveland DW. 1998. Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. Proceedings of the National Academy of Sciences 95: 6361-6366.
Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY. 1992. Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proceedings of the National Academy of Sciences, USA 89: 10405-10409.
Culotta VC, Joh HD, Lin SJ, Slekar KH, Strain J. 1995. A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. Journal of Biological Chemistry 270: 29991-29997.
Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD. 1997. The copper chaperone for superoxide dismutase. Journal of Biological Chemistry 272: 23469-23472.
Culotta VC, Yang M, O''Halloran TV. 2006. Activation of superoxide dismutases: putting the metal to the pedal. Biochimica et Biophysica Acta 1763: 747-758.
Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N. 2003. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Molecular and Cellular Proteomics 2: 325-345.
Fink RC, Scandalios JG. 2002. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Archives of Biochemistry and Biophysics 399: 19-36.
Fridovich I. 1975. Superoxide dismutases. Annual Review of Biochemistry 44: 147-159.
Fridovich I. 1978. The biology of oxygen radicals. Science 201: 875-880.
Fridovich I. 1983. Superoxide radical: an endogenous toxicant. Annual Review of Pharmacology and Toxicology 23: 239-257.
Furukawa Y, Torres AS, O''Halloran TV. 2004. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO Journal 23: 2872-2881.
Geva G, Sharan R. 2011. Identification of protein complexes from co-immunoprecipitation data. Bioinformatics 27: 111-117.
Gietz RD, Schiestl RH. 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7: 253-263.
Halliwell B. 1994. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344: 721-724.
Halliwell B, Gutteridge JMC. 2007. Free radicals in biology and medicine, 4th edn. Oxford, New York: Oxford University Press.
Hanania U, Velcheva M, Or E, Flaishman M, Sahar N, Perl A. 2007. Silencing of chaperonin 21, that was differentially expressed in inflorescence of seedless and seeded grapes, promoted seed abortion in tobacco and tomato fruits. Transgenic Research 16: 515-525.
Hancock KR, Phillips LD, White DWR, Ealing PM. 1997. pPE1000: a versatile vector for the expression of epitope-tagged foreign proteins in transgenic plants. Biotechniques 22: 861-862, 865.
Hartl FU, Hayer-Hartl M. 2009. Converging concepts of protein folding in vitro and in vivo. Nature Structural and Molecular Biology 16: 574-581.
Hirohashi T, Nishio K, Nakai M. 1999. cDNA sequence and overexpression of chloroplast chaperonin 21 from Arabidopsis thaliana. Biochimica et Biophysica Acta 1429: 512-515.
Horwich AL, Fenton WA, Chapman E, Farr GW. 2007. Two families of chaperonin: physiology and mechanism. Annual Review of Cell and Developmental Biology 23: 115-145.
Huang CH, Kuo WY, Weiss C, Jinn TL. 2012a. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis. Plant Physiology 158: 737-746.
Huang CH, Kuo WY, Jinn TL. 2012b. Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis. Plant Signaling and Behavior 7: 429- 431.
Jasid S, Simontacchi M, Puntarulo S. 2008. Exposure to nitric oxide protects against oxidative damage but increases the labile iron pool in sorghum embryonic axes. Journal of Experimental Botany 59: 3953-3962.
Kabiri M, Steverding D. 2001. Identification of a developmentally regulated iron superoxide dismutase of Trypanosoma brucei. Biochemistry Journal 360: 173-177.
Kanematsu S, Asada K. 1990. Characteristic Amino Acid Sequences of Chloroplast and Cytosol Isozymes of CuZn-Superoxide Dismutase in Spinach, Rice and Horsetail. Plant and Cell Physiology 31: 99-112.
Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S. 2004. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Current Biology 14: 354-362.
Kliebenstein DJ, Monde RA, Last RL. 1998. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiology 118: 637-650.
Koumoto Y, Shimada T, Kondo M, Hara-Nishimura I, Nishimura M. 2001. Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. Journal of Biological Chemistry 276: 29688-29694.
Koumoto Y, Shimada T, Kondo M, Takao T, Shimonishi Y, Hara-Nishimura I, Nishimura M. 1999. Chloroplast Cpn20 forms a tetrameric structure in Arabidopsis thaliana. Plant Journal 17: 467-477.
Koumoto Y, Tsugeki R, Shimada T, Mori H, Kondo M, Hara-Nishimura I, Nishimura M. 1996. Isolation and characterization of a cDNA encoding mitochondrial chaperonin 10 from Arabidopsis thaliana by functional complementation of an Escherichia coli groES mutant. Plant Journal 10: 1119-1125.
Kuo WY, Huang CH, Liu AC, Cheng CP, Li SH,Chang WC, Weiss C, Azem A, Jinn TL. 2013a. CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytologist 197: 99-110.
Kuo WY, Huang CH, Jinn TL. 2013b. Chaperonin 20 might be an iron chaperone for superoxide dismutase in activating iron superoxide dismutase (FeSOD). Plant Signaling and Behavior 8: 2, e23074.
Lamb AL, Torres AS, O''Halloran TV, Rosenzweig AC. 2001. Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nature Structural and Molecular Biology 8: 751-755.
Landry SJ, Taher A, Georgopoulos C, van der Vies SM. 1996. Interplay of structure and disorder in cochaperonin mobile loops. Proceedings of the National Academy of Sciences, USA 93: 11622-11627.
Landry SJ, Zeilstra-Ryalls J, Fayet O, Georgopoulos C, Gierasch LM. 1993. Characterization of a functionally important mobile domain of GroES. Nature 364: 255-258.
Lee YJ, Kim DH, Kim YW, Hwang I. 2001. Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13: 2175-2190.
Liu Y, Schiff M, Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. Plant Journal 31: 777-786.
Luk E, Carroll M, Baker M, Culotta VC. 2003. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proceedings of the National Academy of Sciences, USA 100: 10353-10357.
Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon C, Joyard J, Garin J, Barbier-Brygoo H, Ephritikhine G. 2004. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Molecular and Cellular Proteomics 3: 675-691.
Marres CA, Van Loon AP, Oudshoorn P, Van Steeg H, Grivell LA, Slater EC. 1985. Nucleotide sequence analysis of the nuclear gene coding for manganese superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron-sulphur protein. European Journal of Biochemistry 147: 153-161.
McCord JM, Fridovich I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244: 6049-6055.
McDowell JM, Dhandaydham M, Long TA, Aarts MGM, Goff S, Holub EB, Dangl JL. 1998. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10: 1861-1874.
McKersie BD, Murnaghan J, Jones KS, Bowley SR. 2000. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiology 122: 1427-1437.
Mehler AH. 1951. Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Archives of Biochemistry and Biophysics 34: 339-351.
Moran JF, James EK, Rubio MC, Sarath G, Klucas RV, Becana M. 2003. Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules. Plant Physiology 133: 773-782.
Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K. 2008. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell 20: 3148-3162.
Nagae M, Nakata M, Takahashi Y. 2008. Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata. Plant Physiology 146: 1687-1696.
Naranuntarat A, Jensen LT, Pazicni S, Penner-Hahn JE, Culotta VC. 2009. The interaction of mitochondrial iron with manganese superoxide dismutase. Journal of Biological Chemistry 284: 22633-22640.
Naya L, Ladrera R, Ramos J, Gonzalez EM, Arrese-Igor C, Minchin FR, Becana M. 2007. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiology 144: 1104-1114.
Ogawa K, Kanematsu S, Takebe K, Asada K. 1995. Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immuno-gold labeling after rapid freezing and substitution method. Plant and Cell Physiology 36: 565-573.
Pan SM, Hwang GB, Liu HC. 1999. Over-expression and characterization of copper/zinc-superoxide dismutase from rice in Escherichia coli. Botanical Bulletin of Academia Sinica 40: 275-281.
Peck SC. 2005. Update on proteomics in Arabidopsis. Where do we go from here? Plant Physiology 138: 591-599.
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ. 2006. The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Molecular and Cellular Proteomics 5: 114-133.
Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G et al. 2002. Central functions of the luminal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14: 211-236.
Petrovic N, Comi A, Ettinger MJ. 1996. Identification of an apo-superoxide dismutase (Cu, Zn) pool in human lymphoblasts. Journal of Biological Chemistry 271: 28331-28334.
Pilon M, Ravet K, Tapken W. 2011. The biogenesis and physiological function of chloroplast superoxide dismutases. Biochimica et Biophysica Acta 1807: 989-998.
Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O''Halloran TV. 1999. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284: 805-808.
Rae TD, Torres AS, Pufahl RA, O''Halloran TV. 2001. Mechanism of Cu, Zn-superoxide dismutase activation by the human metallochaperone hCCS. Journal of Biological Chemistry 276: 5166-5176.
Richardson A, Georgopoulos C. 1999. Genetic analysis of the bacteriophage T4-encoded cochaperonin Gp31. Genetics 152: 1449-1457.
Richardson A, Schwager F, Landry SJ, Georgopoulos C. 2001. The importance of a mobile loop in regulating chaperonin/ co-chaperonin interaction: humans versus Escherichia coli. Journal of Biological Chemistry 276: 4981-4987.
Rubio MC, Becana M, Sato S, James EK, Tabata S, Spaink HP. 2007. Characterization of genomic clones and expression analysis of the three types of superoxide dismutases during nodule development in Lotus japonicus. Molecular Plant-Microbe Interactions 20: 262-275.
Rubio MC, Ramos J, Webb KJ, Minchin FR, Gonzalez E, Arrese-Igor C, Becana M. 2001. Expression studies of superoxide dismutases in nodules and leaves of transgenic alfalfa reveal abundance of iron-containing isozymes, posttranslational regulation, and compensation of isozyme activities. Molecular Plant-Microbe Interactions 14: 1178-1188.
Sato N, Albrieux C, Joyard J, Douce R, Kuroiwa T. 1993. Detection and characterization of a plastid envelope DNA binding protein which may anchor plastid nucleoids. EMBO Journal 12: 555-561.
Schmidt PJ, Kunst C, Culotta VC. 2000. Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. Journal of Biological Chemistry 275: 33771-33776.
Shi H, Bencze KZ, Stemmler TL, Philpott CC. 2008. A cytosolic iron chaperone that delivers iron to ferritin. Science 320: 1207-1210.
Schlicher T, Soll J. 1996. Molecular chaperones are present in the thylakoid lumen of pea chloroplasts. FEBS Letters 379: 302-304.
Smith MW, Doolittle RF. 1992. A comparison of evolutionary rates of the two major kinds of superoxide dismutase. Journal of Molecular Evolution 34: 175-84.
Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM. 2008. Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biology 8: 13.
Stadtman ER, Berlett BS. 1997. Reactive oxygen-mediated protein oxidation in aging and disease. Chemical Research in Toxicology 10: 485-494.
Stadtman ER, Levine RL. 2000. Protein oxidation. Annals of the New York Academy of Sciences 899: 191-208.
Subramaniam JR, Lyons WE, Liu J, Bartnikas TB, Rothstein J, Price DL, Cleveland DW, Gitlin JD, Wong PC. 2002. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nature Neuroscience 5: 301-307.
Su Z, Chai MF, Lu PL, An R, Chen J, Wang XC. 2007. AtMTM1, a novel mitochondrial protein, may be involved in activation of the manganese-containing superoxide dismutase in Arabidopsis. Planta 226: 1031-1039.
Takahashi MA, Asada K. 1983. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Archives of Biochemistry and Biophysics 226: 558-566.
Terasawa K, Sato N. 2005. Visualization of plastid nucleoids in situ using the PEND-GFP fusion protein. Plant and Cell Physiology 46: 649-660.
Torres AS, Petri V, Rae TD, O’Halloran TV. 2001. Copper stabilizes a heterodimer of the yCCS metallochaperone and its target superoxide dismutase. Journal of Biological Chemistry 276: 38410-38416.
Valentina M, Moshe T, Micha V, Micha G. 2002. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum 115: 393-400.
Van Breusegem F, Slooten L, Stassart JM, Moens T, Botterman J, Van Montagu M, Inze D. 1999. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell and Physiology 40: 515-523.
Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L. 1996. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiology 112: 1703-1714.
Wallace MA, Liou LL, Martins J, Clement MHS, Bailey S, Longo VD, Valentine JS, Gralla EB. 2004. Superoxide inhibits 4fe-4s cluster enzymes involved in amino acid biosynthesis. Journal of Biological Chemistry 279: 32055-32062.
Weisiger RA, Fridovich I. 1973. Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization. Journal of Biological Chemistry 248: 4793-4796.
Weiss C, Bonshtien A, Farchi-Pisanty O, Vitlin A, Azem A. 2009. Cpn20: siamese twins of the chaperonin world. Plant Molecular Biology 69: 227-238.
Wu TH, Liao MH, Kuo WY, Huang CH, Hsieh HL, Jinn YL. 2011. Characterization of copper/zinc and manganese superoxide dismutase in green bamboo (Bambusa oldhamii): Cloning, expression and regulation. Plant Physiology and Biochemistry 49: 195-200.
Yamakura F. 1978. A study on the reconstitution of iron-superoxide dismutase from Pseudomonas ovalis. Journal of Biochemistry 83: 849-857.
Yang M, Cobine PA, Molik S, Naranuntarat A, Lill R, Winge DR, Culotta VC. 2006. The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO Journal 25: 1775-1783.
Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572.
Zelko IN, Mariani TJ, Folz RJ. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine 33: 337-349.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊