|
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78. Bailey-Serres, J., and Voesenek, L.A. (2008). Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59: 313-339. Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A., and van Dongen, J.T. (2012). Making sense of low oxygen sensing. Trends Plant Sci. 17:129-138. Baud, S., Vaultier, M.N., and Rochat, C. (2004). Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J. Exp. Bot. 55: 397-409. Baxter-Burrell, A., Yang, Z., Springer, P.S., and Bailey-Serres, J. (2002). RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296: 2026-2028. Bieniawska, Z., Paul Barratt, D.H., Garlick, A.P., Thole, V., Kruger, N.J., Martin, C., Zrenner, R., and Smith, A.M. (2007). Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49: 810-828. Bouche, N., Yellin, A., Snedden, W.A., and Fromm, H. (2005). Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56: 435-466. Chang, W.W., Huang, L., Shen, M., Webster, C., Burlingame, A.L., and Roberts, J.K. (2000). Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol. 122: 295-318. Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143: 251-262. Chen, X., Pierik, R., Peeters, A.J., Poorter, H., Visser, E.J., Huber, H., de Kroon, H., and Voesenek, L.A. (2010). Endogenous abscisic acid as a key switch for natural variation in flooding-induced shoot elongation. Plant Physiol. 154: 969-977. Christopher, M.E., and Good, A.G. (1996). Characterization of hypoxically inducible lactate dehydrogenase in Maize. Plant Physiol. 112: 1015-1022.
Chung, H.J., and Ferl, R.J. (1999). Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol. 121: 429-436. Conley, T.R. (1999). Mutations affecting induction of glycolytic and fermentative genes during Ggermination and environmental stresses in Arabidopsis. Plant Physiol. 119:599–607. Das, A., and Uchimiya, H. (2002). Oxygen stress and adaptation of a semi-aquatic plant: rice ( Oryza sativa). J. Plant Res. 115: 315-320. Dat, J.F., Capelli, N., Folzer, H., Bourgeade, P., and Badot, P.M. (2004). Sensing and signalling during plant flooding. Plant Physiol. Biochem. 42: 273-282. Dolferus, R., Jacobs, M., Peacock, W.J., and Dennis, E.S. (1994). Differential interactions of promoter elements in stress responses of the Arabidopsis ADH gene. Plant Physiol. 105: 1075-1087. Drew, M.C. (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. M. Biol. 48: 223-250. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33:751-763. Ellis, M.H., Dennis, E.S., and Peacock, W.J. (1999). Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiol. 119:57-64. English, P.J., Lycett, G.W., Roberts, J.A., and Jackson, M.B. (1995). Increased 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Activity in shoots of flooded tomato plants raises ethyleneproduction to physiologically active levels. Plant Physiol. 109: 1435-1440. Felle, H.H. (2005). pH regulation in anoxic plants. Ann. Bot. 96: 519-532. Freeling, M., and Bennett, D.C. (1985). Maize Adh1. Annu. Rev. Genet. 19: 297-323. Garnczarska, M., and Bednarski, W. (2004). Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots. Plant Physiol. Biochem. 42: 233-240. Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 6: 247-256. Geigenberger, P., Fernie, A.R., Gibon, Y., Christ, M., and Stitt, M. (2000). Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol. Chem. 381: 723-740.
Gomes, D., Agasse, A., Thiebaud, P., Delrot, S., Geros, H., and Chaumont, F. (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim. Biophys. Acta. 1788: 1213-1228. Guglielminetti, L., Perata, P., and Alpi, A. (1995). Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiol. 108: 735-741. Gutterson, N., and Reuber, T.L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7: 465-471. Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460: 1026-1030. Hinz, M., Wilson, I.W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E.S., Sauter, M., and Dolferus, R. (2010). Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153: 757-772. Hiroaki Saika, Hideo Matsumura, Tetsuo Takano, Tsutsumi, N., and Nakazono, M. (2006). A point mutation of ADH1 gene is involved in the repression of coleoptile elongation under submergence in rice. Breed. Sci. 56: 69-74. Hoeren, F.U., Dolferus, R., Wu, Y., Peacock, W.J., and Dennis, E.S. (1998). Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genet. 149: 479-490. Hoffmann-Benning, S., and Kende, H. (1992). On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 99: 1156-1161. Huang, S., Colmer, T.D., and Millar, A.H. (2008). Does anoxia tolerance involve altering the energy currency towards PPi? Trends Plant Sci. 13: 221-227. Ismond, K.P., Dolferus, R., de Pauw, M., Dennis, E.S., and Good, A.G. (2003). Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol. 132: 1292-1302. Jackson, M.B. (2008). Ethylene-promoted elongation: an adaptation to submergence stress. Ann. Bot. 101:229-248. Jacobs, M., Dolferus, R., and Van den Bossche, D. (1988). Isolation and biochemical analysis of ethyl methanesulfonate-induced alcohol dehydrogenase null mutants of Arabidopsis thaliana. Heynh. Biochem. Genet. 26: 105-122. Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M., and Last, R.L. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440-450.
Jang, J.Y., Kim, D.G., Kim, Y.O., Kim, J.S., and Kang, H. (2004). An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol. Biol. 54: 713-725. Kaldenhoff, R., Ribas-Carbo, M., Sans, J.F., Lovisolo, C., Heckwolf, M., and Uehlein, N. (2008). Aquaporins and plant water balance. Plant Cell Environ. 31: 658-666. Kato-Noguchi, H. (2006). Pyruvate metabolism in rice coleoptiles under anaerobiosis. Plant Growth Regul. 50: 41-46. Kocourkova, D., Krckova, Z., Pejchar, P., Veselkova, S., Valentova, O., Wimalasekera, R., Scherer, G.F., and Martinec, J. (2011). The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J. Exp. Bot. 62: 3753-3763. Kursteiner, O., Dupuis, I., and Kuhlemeier, C. (2003). The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol. 132: 968-978. Kyozuka, J., Olive, M., Peacock, W.J., Dennis, E.S., and Shimamoto, K. (1994). Promoter elements required for developmental expression of the maize ADH1 gene in transgenic rice. Plant Cell. 6:799-810. Licausi, F. (2011). Regulation of the molecular response to oxygen limitations in plants. New Phyto. 190: 550-555. Licausi, F., van Dongen, J.T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P., and Perata, P. (2010). HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62: 302-315. Ligaba, A., Katsuhara, M., Shibasaka, M., and Djira, G. (2011). Abiotic stresses modulate expression of major intrinsic proteins in barley. C. R. Biol. 334: 127-139. Liu, F., Vantoai, T., Moy, L.P., Bock, G., Linford, L.D., and Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol. 137: 1115-1129. Loreti, E., Poggi, A., Novi, G., Alpi, A., and Perata, P. (2005). A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol. 137: 1130-1138. Maeshima, M. (2001). TONOPLAST TRANSPORTERS: Organization and function. Annu. Rev. Plant Physiol. Mol. Biol. 52:469-497. Magneschi, L., Kudahettige, R.L., Alpi, A., and Perata, P. (2009). Expansin gene expression and anoxic coleoptile elongation in rice cultivars. J. Plant Physiol.166: 1576-1580. Matsumura, H., Takano, T., Yoshida, K.T., and Takeda, G. (1995). A rice mutant lacking alcohol dehydrogenase. Breed. Sci. 45: 365-367. Matsumura, H., Takano, T., Takeda, G., and Uchimiya, H. (1998). ADH1 is transcriptionally active but its translational product is reduced in a rad mutant of rice (Oryza sativa L.), which is vulnerable to submergence stress. Theor. Appl. Genet. 97: 1197-1203. Maurel, C., Verdoucq, L., Luu, D.T., and Santoni, V. (2008). Plant aquaporins: membrane channels with multiple integrated functions. Annu. Rev. Plant Biol. 59:595-624. Mithran, M., Paparelli, E., Novi, G., Perata, P., and Loreti, E. (2013). Analysis of the role of the pyruvate decarboxylase gene family in Arabidopsis thaliana under low-oxygen conditions. Plant Biol. doi: 10.1111/plb.12005. Munnik, T., and Musgrave, A. (2001). Phospholipid signaling in pants: holding on to phospholipase D. Sci. Signal. 2001: 41-42. Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140: 411-432. Nozaki, K., Ishii, D., and Ishibashi, K. (2008). Intracellular aquaporins: clues for intracellular water transport? Pflugers Arch.456:701-707. Park, H.Y., Seok, H.Y., Woo, D.H., Lee, S.Y., Tarte, V.N., Lee, E.H., Lee, C.H., and Moon, Y.H. (2011). AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochem. Biophys. Res. Commun. 414: 135-141. Peng, H.P., Chan, C.S., Shih, M.C., and Yang, S.F. (2001). Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. Plant Physiol. 126: 742-749. Peng, H.P., Lin, T.Y., Wang, N.N., and Shih, M.C. (2005). Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol. Biol. 58:15-25. Peters, C., Li, M., Narasimhan, R., Roth, M., Welti, R., and Wang, X. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell. 22:2642-2659. Pokotylo, I., Pejchar, P., Potocky, M., Kocourkova, D., Krckova, Z., Ruelland, E., Kravets, V., and Martinec, J. (2013). The plant non-specific phospholipase C gene family. Prog. Lipid Res. 52: 62-79. Rahman, M., Grover, A., W. James Peacock, E.S.D., and Ellis, M.H. (2001). Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Aust. J. Plant Physiol. 28: 1231-1241.
Reddy, V.S., Ali, G.S., and Reddy, A.S. (2002). Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J. Biol. Chem. 277: 9840-9852. Rhee, S.G. (1997). Regulation of phosphoinositide-specific phospholipase Cisozymes. J. Biol. Chem. 272: 15045-15048. Ricard, B., Toai, T.V., Chourey, P., and Saglio, P. (1998). Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol. 116:1323-1331. Rieu, I., Cristescu, S.M., Harren, F.J., Huibers, W., Voesenek, L.A., Mariani, C., and Vriezen, W.H. (2005). RP-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production. Jo. Exp.Bot. 56: 841-849. Rivoal, J., and Hanson, A.D. (1994). Metabolic control of anaerobic glycolysis (overexpression of lactatedehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis anpoints to acritical role for lactate secretion. Plant Physiol. 106:1179-1185. Rivoal, J., Ricard, B., and Pradet, A. (1991). Lactate dehydrogenase in Oryza sativa L. seedlings and roots: identification and partial characterization. Plant Physiol. 95: 682-686. Roberts, J.K., Callis, J., Jardetzky, O., Walbot, V., and Freeling, M. (1984a). Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. USA. 81:6029-6033. Roberts, J.K., Callis, J., Wemmer, D., Walbot, V., and Jardetzky, O. (1984b). Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc. Natl. Acad. Sci. USA. 81: 3379-3383. Rolletschek, H., Borisjuk, L., Koschorreck, M., Wobus, U., and Weber, H. (2002). Legume embryos develop in a hypoxic environment. J. Exp. Bot. 53: 1099-1107. Rousselin, P., Lepingle, A., Faure, J.D., Bitoun, R., and Caboche, M. (1990). Ethanol-resistant mutants of Nicotiana plumbaginifolia are deficient in the expression of pollen and seed alcohol dehydrogenase activity. Mol. Gen. Genet. 222:409-415. Saika, H., Okamoto, M., Miyoshi, K., Kushiro, T., Shinoda, S., Jikumaru, Y., Fujimoto, M., Arikawa, T., Takahashi, H., Ando, M., Arimura, S., Miyao, A., Hirochika, H., Kamiya, Y., Tsutsumi, N., Nambara, E., and Nakazono, M. (2007). Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8''-hydroxylase in rice. Plant Cell Physiol. 48:287-298. Sedbrook, J.C., Kronebusch, P.J., Borisy, G.G., Trewavas, A.J., and Masson, P.H. (1996). Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia and Arabidopsis thaliana seedlings. Plant Physiol. 11: 243-257. Shapiguzov, A.Y. (2004). Aquaporins: structure, systematics, and regulatory features. Russ. J. Plant Physiol. 51:127-137. Shiao, T.L., Ellis, M.H., Dolferus, R., Dennis, E.S., and Doran, P.M. (2002). Overexpression of alcohol dehydrogenase or pyruvate decarboxylase improves growth of hairy roots at reduced oxygen concentrations. Biotechnol. Bioeng. 77:455-461. Shinozaki, K., and Yamaguchi-Shinozaki, K. (1996). Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7: 161-167. Subbaiah, C.C., and Sachs, M.M. (2003). Molecular and cellular adaptations of maize to flooding stress. Ann. Bot. 91: 119-127. Takahashi, H., Saika, H., Matsumura, H., Nagamura, Y., Tsutsumi, N., Nishizawa, N.K., and Nakazono, M. (2011). Cell division and cell elongation in the coleoptile of rice alcohol dehydrogenase 1-deficient mutant are reduced under complete submergence. Ann. Bot. 108: 253-261. Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D.T., Bligny, R., and Maurel, C. (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425: 393-397. Urao, T., Yamaguchi-Shinozaki, K., Urao, S., and Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 5: 1529-1539. van Dongen, J.T., Frohlich, A., Ramirez-Aguilar, S.J., Schauer, N., Fernie, A.R., Erban, A., Kopka, J., Clark, J., Langer, A., and Geigenberger, P. (2009). Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants. Ann. Bot. 103: 269-280. Voesenek, L.A., and Sasidharan, R. (2013). Ethylene - and oxygen signalling - drive plant survival during flooding. Plant Biol. 15:426-435. Vriezen, W.H., Hulzink, R., Mariani, C., and Voesenek, L.A. (1999). 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence. Plant Physiol. 121:189-196. Wan, D., Li, R., Zou, B., Zhang, X., Cong, J., Wang, R., Xia, Y., and Li, G. (2012). Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep. 31: 1269-1281. Wang, L., Tsuda, K., Sato, M., Cohen, J.D., Katagiri, F., and Glazebrook, J. (2009). Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Patho. 5: e1000301. Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., and Mackill, D.J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705-708. Yang, C.Y., Hsu, F.C., Li, J.P., Wang, N.N., and Shih, M.C. (2011). The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol. 156:202-212. Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., Lee, J.H., Kim, H.S., Lee, S.M., Yoon, H.W., Lim, C.O., Yun, D.J., Lee, S.Y., Chung, W.S., and Cho, M.J. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis. J. Biol. Chem. 280:3697-3706. Zeng, Y., Wu, Y., Avigne, W.T., and Koch, K.E. (1998). Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol. 116:1573-1583.
|