(35.175.212.130) 您好!臺灣時間:2021/05/18 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭沛楨
研究生(外文):Pei-Chen Kuo
論文名稱:阿拉伯芥缺氧反應突變株之遺傳分析
論文名稱(外文):To map and characterize Arabidopsis aar1 mutant that affects hypoxia induction of ADH.
指導教授:施明哲施明哲引用關係
指導教授(外文):Ming-Che Shih
口試委員:葉開溫張英峯
口試委員(外文):Kai-Wun YehIng-Fen Chang
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:87
中文關鍵詞:缺氧逆境酒精去氫酶遺傳圖譜
外文關鍵詞:Hypoxiaaar1ADHmapping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
淹水為常見的環境逆境,當植物遭逢淹水逆境時,增加不定根、通氣組織以及改變代謝機制都可增加植物對淹水逆境的適應性。在淹水情況下,植物根部附近的土壤空隙充滿水分,造成土壤通透性不佳,形成缺氧的環境。當缺氧逆境發生時,植物體內的代謝途徑將從有氧呼吸轉換為無氧發酵。前人的研究已證實在缺氧時,糖類的代謝、糖解作用以及無氧發酵中的主要基因都會被誘導表現,像是SUCROSE SYNTHASE (SUS)、PYRUVATE DECARBOXYLASE (PDC) 和ALCOHOL DEHYDROGENASE (ADH),其中,ADH表現量的上升有助於增加植物對缺氧的耐受性。本實驗室在先前研究中,將ADH啟動子(promoter)驅動GUS 報導基因(reporter gene) 以轉基因方式轉入阿拉伯芥,並以ethyl methanesulfonate (EMS)處理產生突變株,再使用丙烯醇(allyl alcohol)篩選出對丙烯醇具有抗性且GUS基因表現量下降的植株,命名為allyl alcohol resistance1 (aar1)突變株。以期利用此突變株了解在淹水逆境下訊息傳導路徑。本研究的主要目的為利用遺傳圖譜(genetic mapping) 找出aar1突變株所突變的位置以及分析其於分子層次之特性。利用aar1 (C24 background)與另一種生態型(Lansberg)進行雜交後,收集其F2植株進行遺傳圖譜分析,接著使用分別於不同染色體上的DNA分子標記將可能的突變區域縮小,根據目前的結果我們推測aar1突變株可能存在兩個突變位置,且這兩個位置都位於第三條染色體上,而其中一個位置為一段NON-SPECIFIC PHOSPHOLIPASE C- 6 (NPC6) 基因的缺失,而另一個位置位於NPC6基因之前。
在分子特性方面,我們檢測了一些缺氧逆境時主要會被誘導表現的標誌基因,結果發現ALLYL ALCOHOL RESISTANCE 1(AAR1) 基因只影響了ADH表現,表示AAR1可能參與在其他的代謝途徑之中。因此,我們進一步也利用了微矩陣基因表現技術探討於缺氧逆境下,尋找可能受AAR1 調控的基因群。結果顯示表現於缺氧情況、水分傳導的基因在aar1突變株中有較高程度的表現;然而過氧化酶的活性在aar1突變中表現量較低。因此,我們推論AAR1基因扮演負面調控的角色,抑制過氧化酶等基因表現,另外AAR1可能藉由一個抑制者來調控缺氧時的水分傳導與基因表現。雖然本篇研究尚未知道aar1突變株的確切突變位置與在訊息傳導中所扮演的確切角色,但藉由遺傳圖譜已經知道位於第3條染色體上,而經由微矩陣基因表現技術得到一些線索關於AAR1的位置及其可能參與的訊息傳導路徑。


Flooding is a common environmental stress. When it happened, the catabolism in plants switched from aerobic respiration to anaerobic fermentation. Previous studies showed that oxygen deficiency induced several genes in sugar metabolism, glycolytic and fermentative pathways, including ALCOHOL DEHYDROGENASE (ADH). Our lab has used a negative-selection approach to isolate mutants that were defective in regulating the expression of ADH gene during seed germination and in seedlings under hypoxia stress. This approach used a transgenic line, AG2, in which expression pattern of ADH::GUS gene reflecting the endogenous ADH gene, for ethyl methanesulfonate (EMS) mutagenesis. In order to screen mutants that affect ADH gene expression, seeds were treated with allyl alcohol and selected for survivors. The surviving plants, designed allyl alcohol resistance (aar) mutants, were candidates for hypoxic regulatory mutants. To map and characterize one of these aar mutants, aar1, which is a recessive mutant, we first checked the sequence of the endogenous ADH gene to confirm that the mutation is not located at the ADH locus. Then, we crossed another ecotype Lansberg and aar mutant (C24 background), and collect the F2 plants for genetic mapping. We used markers on different chromosomes, and already narrowed down to two possible regions both at chromosome 3. Through its segregation rate, we hypothesize that there are two mutation sites in the aar1 mutant. One is a deletion in NPC6 locus, and the other one locates at a locus that is proximal to NPC6.
To characterize aar1 mutant, we examined the expression level of several key glycolytic and fermentative genes. The results showed that AAR1 only affects ADH gene, indicating that AAR1 may be involved in other signaling pathway. We also used microarrays to identify the differential gene expressions in aar1 mutant under hypoxic condition. We found groups of genes, including core hypoxia responsive genes and water transport genes, are down regulated in aar1 mutant, while genes that incode peroxidase are up regulated in aar1 mutant. According to this result, we hypothesize that AAR1 plays a negative role, and represses activity of peroxidases under hypoxia. On the other hand, AAR1 regulates ADH and other genes that encode water transporters may be mediate via repressors. Although the identity of the aar1 mutation is still not determined in this study, the genetic mapping and microarray results gave us some clues about the location of AAR1 on chromosome III, and the role that AAR1 plays under hypoxia stress.


TABLE OF CONTENTS
致謝 ii
中文摘要 iii
ABSTRACT v
TABLE OF CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xi
ABBREVIATIONS xii
CHAPTER I 1
INDRODUCTION 1
Hypoxia response in plants 1
Cellular adjustment under hypoxia 2
during hypoxia 2
Hormone and signaling transduction 5
Objectives 8
CHAPTER II 11
GENECTIC MAPPING OF aar1 MUTANT 11
Introduction 11
Material and methods 13
Plant materials and growth condition 13
Out-cross aar1 with Landsberg erecta and select for homozygous F2 for mapping population 13
Hypoxia treatment 14
Total protein extraction 14
Western dot blotting 15
Total RNA extraction and northern dot blotting 16
Genomic DNA extraction 17
Genetic mapping 17
Results 18
Discussion 19
CHAPTER III 27
CHARACTERIZATION OF aar1 UNDER HYPOXIA STRESS 27
Introduction 27
Materials and methods 29
Plant materials and growth condition 29
Allyl alcohol treatments 30
Hypoxic treatments 30
GUS expression assay 31
Total protein extraction 31
ADH enzyme activity assay by native polyacrylamide gel electrophoresis 32
Western blot 32
RNA extraction and reverse transcription 33
RT-PCR and Quantitative reverse transcription PCR 33
Results 35
Discussion 39
CHAPTER IV 48
GENE EXPRESSION PROFILES OF aar1 UNDER HYPOXIA 48
Introduction 48
Materials and methods 49
Plant materials and growth condition 49
Hypoxic treatments 50
RNA extraction and reverse transcription 50
Microarray analysis 51
Quantitative RT-PCR 51
Results 52
Discussion 56
References 80


Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78.
Bailey-Serres, J., and Voesenek, L.A. (2008). Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59: 313-339.
Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A., and van Dongen, J.T. (2012). Making sense of low oxygen sensing. Trends Plant Sci. 17:129-138.
Baud, S., Vaultier, M.N., and Rochat, C. (2004). Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J. Exp. Bot. 55: 397-409.
Baxter-Burrell, A., Yang, Z., Springer, P.S., and Bailey-Serres, J. (2002). RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296: 2026-2028.
Bieniawska, Z., Paul Barratt, D.H., Garlick, A.P., Thole, V., Kruger, N.J., Martin, C., Zrenner, R., and Smith, A.M. (2007). Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49: 810-828.
Bouche, N., Yellin, A., Snedden, W.A., and Fromm, H. (2005). Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56: 435-466.
Chang, W.W., Huang, L., Shen, M., Webster, C., Burlingame, A.L., and Roberts, J.K. (2000). Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol. 122: 295-318.
Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143: 251-262.
Chen, X., Pierik, R., Peeters, A.J., Poorter, H., Visser, E.J., Huber, H., de Kroon, H., and Voesenek, L.A. (2010). Endogenous abscisic acid as a key switch for natural variation in flooding-induced shoot elongation. Plant Physiol. 154: 969-977.
Christopher, M.E., and Good, A.G. (1996). Characterization of hypoxically inducible lactate dehydrogenase in Maize. Plant Physiol. 112: 1015-1022.


Chung, H.J., and Ferl, R.J. (1999). Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol. 121: 429-436.
Conley, T.R. (1999). Mutations affecting induction of glycolytic and fermentative genes during Ggermination and environmental stresses in Arabidopsis. Plant Physiol. 119:599–607.
Das, A., and Uchimiya, H. (2002). Oxygen stress and adaptation of a semi-aquatic plant: rice ( Oryza sativa). J. Plant Res. 115: 315-320.
Dat, J.F., Capelli, N., Folzer, H., Bourgeade, P., and Badot, P.M. (2004). Sensing and signalling during plant flooding. Plant Physiol. Biochem. 42: 273-282.
Dolferus, R., Jacobs, M., Peacock, W.J., and Dennis, E.S. (1994). Differential interactions of promoter elements in stress responses of the Arabidopsis ADH gene. Plant Physiol. 105: 1075-1087.
Drew, M.C. (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. M. Biol. 48: 223-250.
Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33:751-763.
Ellis, M.H., Dennis, E.S., and Peacock, W.J. (1999). Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiol. 119:57-64.
English, P.J., Lycett, G.W., Roberts, J.A., and Jackson, M.B. (1995). Increased 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Activity in shoots of flooded tomato plants raises ethyleneproduction to physiologically active levels. Plant Physiol. 109: 1435-1440.
Felle, H.H. (2005). pH regulation in anoxic plants. Ann. Bot. 96: 519-532.
Freeling, M., and Bennett, D.C. (1985). Maize Adh1. Annu. Rev. Genet. 19: 297-323.
Garnczarska, M., and Bednarski, W. (2004). Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots. Plant Physiol. Biochem. 42: 233-240.
Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 6: 247-256.
Geigenberger, P., Fernie, A.R., Gibon, Y., Christ, M., and Stitt, M. (2000). Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol. Chem. 381: 723-740.


Gomes, D., Agasse, A., Thiebaud, P., Delrot, S., Geros, H., and Chaumont, F. (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim. Biophys. Acta. 1788: 1213-1228.
Guglielminetti, L., Perata, P., and Alpi, A. (1995). Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiol. 108: 735-741.
Gutterson, N., and Reuber, T.L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7: 465-471.
Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460: 1026-1030.
Hinz, M., Wilson, I.W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E.S., Sauter, M., and Dolferus, R. (2010). Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153: 757-772.
Hiroaki Saika, Hideo Matsumura, Tetsuo Takano, Tsutsumi, N., and Nakazono, M. (2006). A point mutation of ADH1 gene is involved in the repression of coleoptile elongation under submergence in rice. Breed. Sci. 56: 69-74.
Hoeren, F.U., Dolferus, R., Wu, Y., Peacock, W.J., and Dennis, E.S. (1998). Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genet. 149: 479-490.
Hoffmann-Benning, S., and Kende, H. (1992). On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 99: 1156-1161.
Huang, S., Colmer, T.D., and Millar, A.H. (2008). Does anoxia tolerance involve altering the energy currency towards PPi? Trends Plant Sci. 13: 221-227.
Ismond, K.P., Dolferus, R., de Pauw, M., Dennis, E.S., and Good, A.G. (2003). Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol. 132: 1292-1302.
Jackson, M.B. (2008). Ethylene-promoted elongation: an adaptation to submergence stress. Ann. Bot. 101:229-248.
Jacobs, M., Dolferus, R., and Van den Bossche, D. (1988). Isolation and biochemical analysis of ethyl methanesulfonate-induced alcohol dehydrogenase null mutants of Arabidopsis thaliana. Heynh. Biochem. Genet. 26: 105-122.
Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M., and Last, R.L. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440-450.


Jang, J.Y., Kim, D.G., Kim, Y.O., Kim, J.S., and Kang, H. (2004). An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol. Biol. 54: 713-725.
Kaldenhoff, R., Ribas-Carbo, M., Sans, J.F., Lovisolo, C., Heckwolf, M., and Uehlein, N. (2008). Aquaporins and plant water balance. Plant Cell Environ. 31: 658-666.
Kato-Noguchi, H. (2006). Pyruvate metabolism in rice coleoptiles under anaerobiosis. Plant Growth Regul. 50: 41-46.
Kocourkova, D., Krckova, Z., Pejchar, P., Veselkova, S., Valentova, O., Wimalasekera, R., Scherer, G.F., and Martinec, J. (2011). The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J. Exp. Bot. 62: 3753-3763.
Kursteiner, O., Dupuis, I., and Kuhlemeier, C. (2003). The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol. 132: 968-978.
Kyozuka, J., Olive, M., Peacock, W.J., Dennis, E.S., and Shimamoto, K. (1994). Promoter elements required for developmental expression of the maize ADH1 gene in transgenic rice. Plant Cell. 6:799-810.
Licausi, F. (2011). Regulation of the molecular response to oxygen limitations in plants. New Phyto. 190: 550-555.
Licausi, F., van Dongen, J.T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P., and Perata, P. (2010). HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62: 302-315.
Ligaba, A., Katsuhara, M., Shibasaka, M., and Djira, G. (2011). Abiotic stresses modulate expression of major intrinsic proteins in barley. C. R. Biol. 334: 127-139.
Liu, F., Vantoai, T., Moy, L.P., Bock, G., Linford, L.D., and Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol. 137: 1115-1129.
Loreti, E., Poggi, A., Novi, G., Alpi, A., and Perata, P. (2005). A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol. 137: 1130-1138.
Maeshima, M. (2001). TONOPLAST TRANSPORTERS: Organization and function. Annu. Rev. Plant Physiol. Mol. Biol. 52:469-497.
Magneschi, L., Kudahettige, R.L., Alpi, A., and Perata, P. (2009). Expansin gene expression and anoxic coleoptile elongation in rice cultivars. J. Plant Physiol.166: 1576-1580.
Matsumura, H., Takano, T., Yoshida, K.T., and Takeda, G. (1995). A rice mutant lacking alcohol dehydrogenase. Breed. Sci. 45: 365-367.
Matsumura, H., Takano, T., Takeda, G., and Uchimiya, H. (1998). ADH1 is transcriptionally active but its translational product is reduced in a rad mutant of rice (Oryza sativa L.), which is vulnerable to submergence stress. Theor. Appl. Genet. 97: 1197-1203.
Maurel, C., Verdoucq, L., Luu, D.T., and Santoni, V. (2008). Plant aquaporins: membrane channels with multiple integrated functions. Annu. Rev. Plant Biol. 59:595-624.
Mithran, M., Paparelli, E., Novi, G., Perata, P., and Loreti, E. (2013). Analysis of the role of the pyruvate decarboxylase gene family in Arabidopsis thaliana under low-oxygen conditions. Plant Biol. doi: 10.1111/plb.12005.
Munnik, T., and Musgrave, A. (2001). Phospholipid signaling in pants: holding on to phospholipase D. Sci. Signal. 2001: 41-42.
Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140: 411-432.
Nozaki, K., Ishii, D., and Ishibashi, K. (2008). Intracellular aquaporins: clues for intracellular water transport? Pflugers Arch.456:701-707.
Park, H.Y., Seok, H.Y., Woo, D.H., Lee, S.Y., Tarte, V.N., Lee, E.H., Lee, C.H., and Moon, Y.H. (2011). AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochem. Biophys. Res. Commun. 414: 135-141.
Peng, H.P., Chan, C.S., Shih, M.C., and Yang, S.F. (2001). Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. Plant Physiol. 126: 742-749.
Peng, H.P., Lin, T.Y., Wang, N.N., and Shih, M.C. (2005). Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol. Biol. 58:15-25.
Peters, C., Li, M., Narasimhan, R., Roth, M., Welti, R., and Wang, X. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell. 22:2642-2659.
Pokotylo, I., Pejchar, P., Potocky, M., Kocourkova, D., Krckova, Z., Ruelland, E., Kravets, V., and Martinec, J. (2013). The plant non-specific phospholipase C gene family. Prog. Lipid Res. 52: 62-79.
Rahman, M., Grover, A., W. James Peacock, E.S.D., and Ellis, M.H. (2001). Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Aust. J. Plant Physiol. 28: 1231-1241.

Reddy, V.S., Ali, G.S., and Reddy, A.S. (2002). Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J. Biol. Chem. 277: 9840-9852.
Rhee, S.G. (1997). Regulation of phosphoinositide-specific phospholipase Cisozymes. J. Biol. Chem. 272: 15045-15048.
Ricard, B., Toai, T.V., Chourey, P., and Saglio, P. (1998). Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol. 116:1323-1331.
Rieu, I., Cristescu, S.M., Harren, F.J., Huibers, W., Voesenek, L.A., Mariani, C., and Vriezen, W.H. (2005). RP-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production. Jo. Exp.Bot. 56: 841-849.
Rivoal, J., and Hanson, A.D. (1994). Metabolic control of anaerobic glycolysis (overexpression of lactatedehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis anpoints to acritical role for lactate secretion. Plant Physiol. 106:1179-1185.
Rivoal, J., Ricard, B., and Pradet, A. (1991). Lactate dehydrogenase in Oryza sativa L. seedlings and roots: identification and partial characterization. Plant Physiol. 95: 682-686.
Roberts, J.K., Callis, J., Jardetzky, O., Walbot, V., and Freeling, M. (1984a). Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. USA. 81:6029-6033.
Roberts, J.K., Callis, J., Wemmer, D., Walbot, V., and Jardetzky, O. (1984b). Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc. Natl. Acad. Sci. USA. 81: 3379-3383.
Rolletschek, H., Borisjuk, L., Koschorreck, M., Wobus, U., and Weber, H. (2002). Legume embryos develop in a hypoxic environment. J. Exp. Bot. 53: 1099-1107.
Rousselin, P., Lepingle, A., Faure, J.D., Bitoun, R., and Caboche, M. (1990). Ethanol-resistant mutants of Nicotiana plumbaginifolia are deficient in the expression of pollen and seed alcohol dehydrogenase activity. Mol. Gen. Genet. 222:409-415.
Saika, H., Okamoto, M., Miyoshi, K., Kushiro, T., Shinoda, S., Jikumaru, Y., Fujimoto, M., Arikawa, T., Takahashi, H., Ando, M., Arimura, S., Miyao, A., Hirochika, H., Kamiya, Y., Tsutsumi, N., Nambara, E., and Nakazono, M. (2007). Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8''-hydroxylase in rice. Plant Cell Physiol. 48:287-298.
Sedbrook, J.C., Kronebusch, P.J., Borisy, G.G., Trewavas, A.J., and Masson, P.H. (1996). Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia and Arabidopsis thaliana seedlings. Plant Physiol. 11: 243-257.
Shapiguzov, A.Y. (2004). Aquaporins: structure, systematics, and regulatory features. Russ. J. Plant Physiol. 51:127-137.
Shiao, T.L., Ellis, M.H., Dolferus, R., Dennis, E.S., and Doran, P.M. (2002). Overexpression of alcohol dehydrogenase or pyruvate decarboxylase improves growth of hairy roots at reduced oxygen concentrations. Biotechnol. Bioeng. 77:455-461.
Shinozaki, K., and Yamaguchi-Shinozaki, K. (1996). Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7: 161-167.
Subbaiah, C.C., and Sachs, M.M. (2003). Molecular and cellular adaptations of maize to flooding stress. Ann. Bot. 91: 119-127.
Takahashi, H., Saika, H., Matsumura, H., Nagamura, Y., Tsutsumi, N., Nishizawa, N.K., and Nakazono, M. (2011). Cell division and cell elongation in the coleoptile of rice alcohol dehydrogenase 1-deficient mutant are reduced under complete submergence. Ann. Bot. 108: 253-261.
Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D.T., Bligny, R., and Maurel, C. (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425: 393-397.
Urao, T., Yamaguchi-Shinozaki, K., Urao, S., and Shinozaki, K. (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 5: 1529-1539.
van Dongen, J.T., Frohlich, A., Ramirez-Aguilar, S.J., Schauer, N., Fernie, A.R., Erban, A., Kopka, J., Clark, J., Langer, A., and Geigenberger, P. (2009). Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants. Ann. Bot. 103: 269-280.
Voesenek, L.A., and Sasidharan, R. (2013). Ethylene - and oxygen signalling - drive plant survival during flooding. Plant Biol. 15:426-435.
Vriezen, W.H., Hulzink, R., Mariani, C., and Voesenek, L.A. (1999). 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence. Plant Physiol. 121:189-196.
Wan, D., Li, R., Zou, B., Zhang, X., Cong, J., Wang, R., Xia, Y., and Li, G. (2012). Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep. 31: 1269-1281.
Wang, L., Tsuda, K., Sato, M., Cohen, J.D., Katagiri, F., and Glazebrook, J. (2009). Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Patho. 5: e1000301.
Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., and Mackill, D.J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705-708.
Yang, C.Y., Hsu, F.C., Li, J.P., Wang, N.N., and Shih, M.C. (2011). The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol. 156:202-212.
Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., Lee, J.H., Kim, H.S., Lee, S.M., Yoon, H.W., Lim, C.O., Yun, D.J., Lee, S.Y., Chung, W.S., and Cho, M.J. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis. J. Biol. Chem. 280:3697-3706.
Zeng, Y., Wu, Y., Avigne, W.T., and Koch, K.E. (1998). Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol. 116:1573-1583.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top