(3.236.118.225) 您好!臺灣時間:2021/05/14 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳琳
研究生(外文):Lin Chen
論文名稱:光質對室內植物光合作用表現及甲醛移除能力之影響
論文名稱(外文):Effects of Light Quality on Photosynthetic Characteristics and Removal of Formaldehyde in Indoor Plants
指導教授:葉德銘葉德銘引用關係
指導教授(外文):Der-Ming Yeh
口試委員:王亞男張育森蔡智賢
口試委員(外文):Ya-Nan WangYu-Sen ChangJyh-Shyan Tsay
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:79
中文關鍵詞:葉綠素螢光發光二極體病態建築症候群氣孔揮發性有機化學物
外文關鍵詞:chlorophyll fluorescencelight emitting diodesick building syndromestomatavolatile organic compounds
相關次數:
  • 被引用被引用:1
  • 點閱點閱:490
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究模擬室內低光強度環境,利用發光二極體(light emitting diode, LED)可調整光質之特點,探討不同光質對室內植物光合作用特性之影響。且因室內裝潢、建材多含高量甲醛(formaldehyde),容易於室內累積造成室內空氣品質不良,故本研究亦進一步探討不同光質對室內植物甲醛移除能力之影響。
分別以光強度17.5、57.5及19.5 μmol·m-2·s-1之藍:紅比例0%、9%、16%、43%、88%、95%及100%光質,處理黛粉葉‘星光燦爛’、白鶴芋‘帕拉斯’及粗肋草‘銀后’,以純藍光處理者新生葉片數較少,而高比例紅光處理者新生葉片數較多。藍光比例43%以上或紅光比例大於84%,皆會使黛粉葉‘星光燦爛’葉片之最小螢光值(Fo)上升,而最大光化學利用效率(Fv/Fm)及有效光化學效率(Fv’/Fm’)值降低,粗肋草‘銀后’ Fo亦隨紅光比例自57%增加至100%而上升,但對白鶴芋‘帕拉斯’之影響較無明顯趨勢。藍光比例大於43%或紅光比例57%以上之處理,黛粉葉‘星光燦爛’、白鶴芋‘帕拉斯’及粗肋草‘銀后’葉片淨光合作用(net photosynthetic rate, Pn)、氣孔導度及蒸散作用速率下降,但隨藍光比例增加(43%至100%),使細胞間隙二氧化碳濃度(intercellular CO2 concentration, Ci)升高。藍光比例大於43%時,葉片之Rubisco活性指標(Pn/Ci)亦下降。純藍光及純紅光處理者最大淨光合作用速率與光合作用量子產量較紅藍混合光質處理者低。
於0-300 μmol·m-2·s-1藍:紅比例0%、9%、16%、43%、88%、95%及100%光質下測量黛粉葉‘星光燦爛’、白鶴芋‘帕拉斯’及粗肋草‘銀后’光合作用參數。結果顯示黛粉葉‘星光燦爛’在光強度75 μmol·m-2·s-1以上時以純藍光及純紅光處理者之淨光合作用速率較低,白鶴芋‘帕拉斯’則在100 μmol·m-2·s-1以上時以純藍光處理者較低,而粗肋草‘銀后’則未有顯著差異。
在50 μmol·m-2·s-1環境下,置於含36%綠光之白光LED 燈處理2週,對參試12種天南星科室內植物之淨光合作用速率皆無顯著影響,但隨著燈管中藍光比例自22%增加至47%,黃金葛、黃金葛‘萊姆’、火鶴‘熱情’、合果芋‘紅蝴蝶’、合果芋‘綠精靈’、粗肋草‘銀后’及黛粉葉‘白玉’之葉片氣孔導度增加。
在純藍光、純紅光、白光(紅、藍及綠光質比為19:29:52) LED燈及T5螢光燈處理下,白鶴芋‘帕拉斯’、臺灣山蘇、波斯頓腎蕨及黛粉葉‘白玉’於擺放木心板之密閉熏氣箱內皆可移除木心板所釋放之甲醛。純藍光及純紅光LED燈處理中,以紅光LED處理之白鶴芋‘帕拉斯’每盆及每單位葉面積甲醛移除量較低,而藍光LED燈處理之波斯頓腎蕨較紅光LED燈處理有較多甲醛移除量,且能較快降低箱內甲醛濃度。而混合光質之T5螢光燈管處理,可使臺灣山蘇每盆及每單位葉面積甲醛移除量較高。


This study aimed to evaluate effects of light emitting diode (LED) light quality on photosynthetic characteristics of indoor plants. As interior decoration and building materials would cause high levels of formaldehyde accumulation and poor indoor air quality, effects of light quality on removal of formaldehyde by indoor plants was also investigated.
Diffenbachia ‘Sparkle’, Spathiphyllum kochii ‘Palas’, and Aglaonema ‘Silver Queen’ were grown under light intensity of 17.5, 57.5, and 19.5 μmol·m-2·s-1 photon flux density (PPF), respectively, with different blue : red ratios of 0%, 9%, 16%, 43%, 88%, 95%, and 100%. Plants grown under 100% blue light had fewer new leaf number, while those under high red light ratios (84%-100%) had more new leaf number. Diffenbachia ‘Sparkle’ grown under high ratios of blue (over 43%) or red (over 84%) light exhibited increased Fo value, and decreased Fv/Fm, and Fv’/Fm’ values. Fo value of leaves in Aglaonema ‘Silver Queen’ increased as red light ratio increased from 57% to 100%. Fv/Fm value of Spathiphyllum ‘Palas’ did not vary with the light quality tested. Plants grown under higher ratios of blue (over 43%) or red light (over 57%) had lower net photosynthesis rate (Pn), stomatal conductance, and transpiration rate. Intercellular CO2 concentration (Ci) decreased with blue light ratio increased from 43% to 100%. Plants grown under higher ratios of blue light (over 43%) had lower Rubisco activity index (Pn/Ci). Plants grown under 100% blue and 100% red light had lower maximum net photosynthesis rate and quantum yield of CO2 fixation than those grown with mixed light.
Photosynthetic characteristics were measured for three plant species grown under light intensity of 0 to 300 μmol·m-2·s-1 PPF with various blue : red ratios (0%, 9%, 16%, 43%, 88%, 95%, and 100%). Results showed Pn was lower in Diffenbachia ‘Sparkle’ plants grown at 75 μmol·m-2·s-1 or higher light intensity with 100% blue or 100% red light. Spathiphyllum ‘Palas’ plants had lower Pn when grown under 100% blue light at 100 μmol·m-2·s-1 or higher light intensity, Pn of Aglaonema ‘Silver Queen’ plants were not affected by various blue : red ratio treatments.
Twelve Araceae plant species were grown under LED white light including 36% green light and different blue to red light ratio (22%, 30%, and 47% blue light) at light intensity of 50 μmol·m-2·s-1 PPF for 2 weeks. Pn of the tested plants were not affected by light quality. However, stomatal conductance of Epipremnum aurem, Epipremnum aurem ‘Lime’, Anthurium andraeanum ‘Passion’, Syngonium podophyllum ‘Roxana’, Syngonium podophyllum ‘Pixie’, Aglaonema ‘Silver Queen’, and Diffenbachia ‘Camilla’ increased when blue light percentage increased from 22% to 47%.
Spathiphyllum ‘Palas’, Asplenium nidus, Nephrolepis exaltata ‘Bostoniensis’, and Diffenbachia ‘Camilla’ plants were placed in chambers with one block wooden board under 100% blue, 100% red, white (red:blue:green ratio is 19:29:52) LED light, and T5 fluorescent lamp. Results showed tested plant species could remove formaldehyde released from the wooden board. Spathiphyllum ‘Palas’ placed under 100% red LED light removed less formaldehydethan those under 100% blue LED light. Nephrolepis exaltata ‘Bostoniensis’ placed under 100% blue LED light removed more formaldehyde than those placed under 100% red LED light. Asplenium nidus placed under T5 fluorescent lamp removed more formaldehyde than 100% blue, 100% red, and white LED light treatments per potted plant and per leaf area.


目錄
表目錄 iv
圖目錄 v
中文摘要 viii
Abstract x
前言 (Introduction) 1
前人研究 (Literature Review) 3
一、發光二極體於園藝之應用 3
二、光質對植物之影響 3
三、室內空氣品質 7
四、環境中之甲醛污染源 7
五、甲醛對人體之危害 8
六、植物移除甲醛之機制 9
七、影響植物移除甲醛及其他VOCs之因子 10
材料與方法 (Materials and Methods) 12
試驗一、不同紅藍比例光質LED燈對黛粉葉‘星光燦爛’葉片生長與光合作用之影響 12
試驗二、不同紅藍比例光質LED燈對白鶴芋‘帕拉斯’葉片生長與光合作用之影響 13
試驗三、不同紅藍比例光質LED燈對粗肋草‘銀后’葉片生長與光合作用之影響 14
試驗四、不同光質比例之白光LED燈對十二種天南星科室內植物光合作用之影響 15
試驗五、不同光質LED燈及T5螢光燈對室內植物移除甲醛能力之影響 16
結果 (Results) 18
試驗一、不同紅藍比例LED燈對黛粉葉‘星光燦爛’葉片生長與光合作用之影響 18
試驗二、不同紅藍比例光質LED燈對白鶴芋‘帕拉斯’葉片生長與光合作用之影響 19
試驗三、不同紅藍比例光質LED燈對粗肋草‘銀后’ 葉片生長與光合作用之影響 20
試驗四、不同光質比例白光LED燈對十二種天南星科室內植物光合作用之影響 21
試驗五、不同光質LED燈及T5螢光燈對室內植物移除甲醛能力之影響 23
討論 (Discussion) 59
結論 (Conclusions) 69
參考文獻 (References) 71
附錄(Appendix) 79


江哲銘、李俊璋、洪玉珠. 2007. 病態建築診斷機制建立計畫. 內政部建築研究所.
行政院環境保護署. 2005.揮發性有機物空氣污染管制及排放標準. <http://ivy5.epa.gov.tw/epalaw/docfile/040162.pdf>
余軍洪. 2010. 常見室內植物移除甲醛能力之研究. 國立臺灣大學園藝學系碩士論文.
李俊璋. 2003. 居住環境中甲醛及揮發性有機物質逸散材質之生命週期與健康風險研究(I). 國立成功大學工業衛生科暨環境醫學研究所. NSC91-2621-Z-006-006.
林君穎. 2004. 環境因子對室內建材VOCs及Formaldehyde 逸散率之影響研究. 國立成功大學環境醫學研究所碩士論文.
孫慶成、陳志宏. 2011. LED的發展與照明技術應用趨勢. 前瞻科技與管理 1(2):1-23.
徐邦達. 2001. 來自植物的葉綠素螢光:原理及測量. 光合作用研討會專刊:葉綠素螢光反應與環境壓力. 澳登堡股份有限公司編印. p1-8.
曹哲維. 2011. 栽培光度及介質對室內植物吸收苯及甲苯之影響. 國立臺灣大學植物病理與微生物學系碩士論文.
陳彥宇. 2007. 常見室內植物對甲醛及二氧化碳之吸收及反應. 國立臺灣大學植物病理與微生物學系碩士論文.
游玫琦譯. 1997. 如何預防居家健康殺手. 旺文社, 台北.
黃玉立. 2006. 高污染空品區有害空氣污染物本土暴露特性分析與資料庫建置. 子計畫一:本土化生活型態及呼吸暴露係數之建置與評估. 國立高雄第一科技大學環境與安全衛生工程系.
黃東海. 2007. 既有辦公建築室內空氣品質改造及檢測之研究-以高雄市辦公建築為例. 國立成功大學建築研究所碩士論文.
Awbi, H.B. and A.J. Pay. 1995. A study of the air quality in classroom. Proc. Intl. Proceedings of Second International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings. 93-104.
Barta, D.J., D.J. Tennessen, R.J. Bula, and T.W. Tibbitts. 1991. Wheat growth under a light source with and without blue photon supplementation. ASGSB Bull. 5:51.
Barta, D.J., T.W. Tibbitts, R.J. Bula, and R.C. Morrow. 1992. Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv. Space Res. 12:141-149.
Brown, C.S., A.C. Schuerger, and J.C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120:808-813.
Brown, S.K. 1999. Chamber assessment of formaldehyde and VOC emissions from wood-based panels. Indoor Air 9:209-215.
Bukhov, N.G., I.S. Drozdova, V.V. Bondar, and A.T. Mokronosov. 1992. Blue, red and blue plus red light control of chlorophyll content and CO2 gas exchange in barley leaves: Quantitative description of the effects of light quality and fluence rate. Physiol. Plant. 85:632-638.
von Caemmerer, S. and G.D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376-387.
Chen, W., J.S. Zhang, and Z. Zhang. 2005. Performance of air cleaners for removing multiple volatile organic compounds in indoor air. ASHRAE Trans. 111:1101-1114.
Clements-Croome, D.J., H.B. Awbi, Z.S. Bako-Biro, N. Kochhar, and M. Williams. 2008. Ventilation rates in schools. Build. Environ. 43:362-367.
DeEll, J.R., O. van Kooten, R.K. Prange, and D.P. Murr. 1999. Application of chlorophyll fluorescence techniques in postharvest physiology. Hort. Rev. 23:69-197.
Doi, M., M. Wada, and K. Shimazaki. 2006. The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant Cell Physiol. 47:748-755.
Dougher, T. and B. Bugbee. 2001. Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Photochem. Photobiol 73:199–207.
Farquhar, G.D. and R.A. Richards. 1984. Isotopic composition of plant carbon correlates water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11:539-552.
Farquhar, G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33:317-345.
Folta, K.M. and S.A. Maruhnich. 2007. Green light: A signal to slow down or stop. J. Expt. Bot. 58:3099-3111.
Frechilla, S., L.D. Talbott, R.A. Bogomolni, and E. Zeiger. 2000. Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol. 41:171-176.
Giese, M., U. Bauer-Doranth, C. Langebartels, and H. Sandermann Jr. 1994. Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and soybean (Glycine max L.) cell-suspension cultures. Plant Physiol. 104:1301-1309.
Goins, G.D., N.C. Yorio, M.M. Sanwo, and C.S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Expt. Bot. 48:1407-1413.
Guieysse, B., C. Hort, V. Platel, R. Munoz, M. Ondarts, and S. Revah. 2008. Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol. Adv. 26:398-410.
Heo, J., C. Lee, D. Chakrabarty, and K. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regulat. 38:225–230.
Heo, J.W., C.W. Lee, and K.Y. Peak. 2006. Influence of mixed LED radiation on the growth of annual plants. J. Plant Biol. 49:286-290.
Hines, A.L., T.K. Ghosh, S.K. Loyalka, and R.C. Warder, Jr. 1993. Indoor air quality and control. Prentice Hall, Englewood Cliffs, N. J.
Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light dose-response of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combination of red and blue light. J. Expt. Bot. 6:3107-3117.
IARC. 2006. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. Morographs on the evalution of carcinogenic risks to humans. Vol. 88.
Iino, M., T. Ogawa, and E. Zeiger. 1985. Kinetic properties of the blue-light responses of stomata. Proc. Natl. Acad. Sci. USA 82:8019-8023.
Inada, K. 1976. Action spectra for photosynthesis in higher plants. Plant Cell Physiol. 17:255-265.
Jantunen, M., J.J.K. Jaakkola, and M. Krzyzanowski. 1997. Assessment of exposure to indoor air pollutants. WHO regional publications. European series; No. 78.
Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedlings quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814.
Jones, A.P. 1999. Indoor air quality and health. Atmospheric Environ. 33:4535-4564.
Kelly, T.J., D.L. Smith, and J. Satola. 1999. Emission rates of formaldehyde from materials and consumer products forum in California home. Environ. Sci. Technol. 33:81-88.
Kilburn, K. H. 1994. Neurobehavioral impairment and seizures from formaldehyde. Arch. Environ. Health. 49(1):37 (abstr.).
Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Bot. 94:691-697.
Kim, K.J., M.J. Kil, J.S. Song, E.H. Yoo, K. Son, and S.J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci. 133:521-526.
Kinney, P.L., S.N. Chillrud, S. Ramstrom, J. Ross, and J.D. Spengler. 2002. Exposures to multiple air toxics in New York City. Environ. Health Perspect. 110:539-546.
Klepeis, N.E., W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J.V. Behar, S.C. Hern, and W.H. Engelmann. 2001. The national humam activity pattern survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Exposure Anal. Environ. Epidem. 11:231-252.
Kondo, T., K. Hasegawa. R. Uchida. M. Onishi. A. Mizukami. and K. Omasa. 1996. Absorption of atmospheric formaldehyde by deciduous broad-leaved, evergreen broad-leaved, and coniferous tree species. Bull. Chem. Soc. Jpn. 69:3673–3679.
Kuno, N. and M. Furuya. 2000. Phytochrome regulation of nuclear gene expression in plants. Cell Dev. Biol. 11:485-493.
Lee, S.H., R.K. Tewari, E.J. Hahn, and K.Y. Paek. 2007. Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlet. Plant Cell Tiss. Organ Cult. 90:141-151.
Leong, T.Y. and J.M. Anderson. 1984. Effects of light quality on the composition and function of thylakoid membranes in Atriplex triangularis. Biochim. Biophys. Acta 766:533-541.
Liu, X.Y., S. Guo, Z. Xu, X. Jiao, and T. Takafumi. 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes. HortScicence 46:217-221.
Liu, X., S. Guo, T. Chang, Z. Xu, and T. Takafumi. 2012. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afr. J. Biotechnol. 11:6169-6177.
Lopez-Juez, E. and M.J.G. Hughes. 1995. Effects of blue light and red light on the control of chloroplast acclimation of light-grown pea leaves to increased fluence rates. Photochem. Photobiol. 61:106-111.
Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, E. Goto, and K. Kurata. 2004. Photosynthetic characteristics of rice leaves grown under red light with or without blue supplemental blue light. Plant Cell Physiol. 45:1870-1874.
Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata. 2007. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci. Plant Nutr. 53:459-465.
Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata. 2008. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant Cell Physiol. 49:664-670.
McCree, K.J. 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agr. Meteorol. 9:191-216.
Miyashita, Y., Y. Kitaya, C. Kubota, T. Kozai, and T. Kimura. 1995. Effects of red and far-red light on the growth and morphology of potato plantlets in vitro: Using light emitting diodes as a light source for micropropagation. Acta Hort. 393:189-194.
Morison, J.I.L. and P.G. Jarvis. 1983. Direct and indirect effects of light on stomata. II In Commelina communis L. plant. Cell Environ. 6:103-109.
Morrow, R.C. 2008. LED lighting in horticulture. HortScience 43:1947-1950.
Morrow, R.C., R.J. Bula, and T.W. Tibbitts. 1989. Light emitting diodes as a photosynthetic irradiance source for plants. ASGSB Bull. 3:60.
Morrow, R.C., N.A. Duffie, T.W. Tibbitts, R.J. Bula, D.J. Barta, D.W. Ming, R.M. Wheeler, and D.M. Porterfield. 1995. Plant response in the Astroculture flight experiment unit. SAE Technical Paper Series Paper No. 951624.
Nijssen, C., O. Kuhn, and W. Verbeek. 1990. Method and device for lighting seeds or plants. U.S. Patent 4,914,858. Issued 4/10/1990.
Ohashi-Kaneko, K., M. Takase, N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Ctrl. Biol. 45:189-198.
Ohashi-Kaneko, K., R. Matsuda, E. Goto, K. Fujiwara, and K. Kurata. 2006. Growth of rice plants under red light with or without supplemental blue light. Soil Sci. Plant Nutr. 52:444-452.
Pemadasa, M.A. 1982. Abaxial and adaxial stomatal responses to light of different wavelengths and to phenylacetic acid on isolated epidermis of Commelina communis L. J. Expt. Bot. 33:92-99.
Pfundel, E., E. Baake. 1990. A quantitative description of fluorescence excitation spectra in intact bean leaves greened under intermittent light. Photosyn. Res. 26:19-28.
Ritchie, I.M. and R.G. Lehnen. 1987. Formaldehyde-related health complaints of residents living in mobile and conventional homes. Amer. J. Public Health 77:323-328.
Roelfsema, M.R.G., S. Hanstein, H.H. Felle, and R. Hedrich. 2002. CO2 provides an intermediate link in the red light responses of guard cells. Plant J. 32:65-75.
Sasakawa, H. and Y. Tamamoto. 1979. Effects of red, far red, and blue light on enhancement of nitrate reductase activity and on nitrate uptake in etiolated rice seedlings. Plant Physiol. 63:1098-1101.
Savvides, A., D. Fanourakis, and W. van Ieperen. 2012. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J. Expt. Bot. 63:1135-1143.
Schimid, R., R. Wennicke, and S. Fleischhauer. 1990. Quantitative correlation of peripheral and intrinsic core polypeptides of photosystem II with photosynthetic electron-transport activity of Acetabularia mediterranea in red and blue light. Planta 182:391-398.
Schmitz, H., U. Hilgers, and M. Weidner. 2000. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol. 147:307-315.
Schuerger, A. and J. Richards. 2006. Effects of artificial lighting on the detection of plant stress with spectral reflectance remote sensing in bioregenerative life support systems. Intl. J. Astrobiology 5:151–169.
Schuerger, A.C., C.S. Brown, and E.C. Stryjewsk. 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann. Bot. 79:273-282.
Seco, R., J. Penuelas, and I. Filella. 2007. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmo. Environ. 41:2477-2499.
Shimazaki, K., M. Doi, S.M. Assmann, and T. Kinoshita. 2007. Light regulation of stomatal movement. Annu. Rev. Plant Biol. 58:219-247.
Steele, R.V. 2007. The story of a new light source. Nature Photonics 1:25-26.
Sabo, A., T. Krekling, and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell. Tiss. Org. Cult. 41:177-185.
Talbott, L.D., J.W. Hammad, L. Cien Harn, V.H. Nguyen, J. Patel, and E. Zeiger. 2006. Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of arabidopsis operates only in the potassium-dependent, morning phase of movement. Plant Cell Physiol. 47:332-339.
Tennessen, D.J., E.L. Singsaas, and T.D. Sharkey. 1994. Light-emitting diodes as a light source for photosynthesis research. Photosyn. Res. 39:85-92.
Tepperman, J.M., T. Zhu, H. Chang, X. Wang, and P.H. Quail. 2001. Multiple transcription-factor genes are early targets of phytochrome A signaling. PNAS 98:9437-9442.
Thornley, J.H.M. 1976. Mathematical models in plant physiology : A quantitative approach to problems in plant and crop physiology. Academic Press, London, UK.
U.S. Environmental Protection Agency. 2008. Indoor Air Quality, Indoor Air Facts, NO.4. Sick Building Syndrome. Indoor Air Home, Washington, D.C. 20 June 2013. < http://www.epa.gov/iaq/pdfs/sick_building_factsheet.pdf >
U.S. Environmental Protection Agency. 2009. Indoor Air Quality, An Introduction to Indoor Air Quality. Formaldehyde. Indoor Air Quality Home, Washington, D.C. 18 June 2013. <http://www.epa.gov/iaq/formaldehyde.html>
Wang, H., M. Gu, J. Cui, K. Shi, Y. Zhou, and J. Yu. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B: Biol. 96:30-37.
Wanner, H.U. and M. Kuhn. 1986. Indoor air pollution by building materials. Environ. Intl. 12:311-315.
Wargocki, P., D.P. Wyon, Y.K. Baki, G. Clausen, and P.O. Fanger. 1999. Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air 9: 165-179.
Wennicke, H. and R. Schimid. 1987. Control of the photosynthetic apparatus of Acetabularia mediterranea by blue light. Plant Physiol. 84:1252-1256.
Whitelam, G. and K. Halliday. 2007. Light and plant development. Blackwell Publishing, Oxford, UK.
Willmer, C.M., M.D. Fricker. 1996. Stomata. 2nd ed. Chapman & Hall, London, UK.
Wolverton, B.C. 1988. Foliage plants for improving indoor air quality. Report. National Aeronautics and Space Administration, Stennis Space Center, Mississippi.
Wolverton, B.C. and J.D. Wolverton. 1993. Plants and soil microorganisms: Removal of formaldehyde, xylene, and ammonia from the indoor environment. J. Mississippi Acad. Sci. 38:11-15.
Wolverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plants for indoor air pollution abatement. Report. National Aeronautics and Space Administration, Stennis Space Center, Mississippi.
Xu, Z., L. Wang, and H. Hou. 2011. Formaldehyde removal by potted plant-soil system. J. Hazardous Materials 192:314-318.
Yanagi, T., K. Okamoto, and S. Takita. 1996. Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Hort. 440:117-122.
Yorio, N.C., G.D. Goins, H.R. Kagie, R.M. Wheeler, and J.C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36:380-383.
Yu, H. and B. Ong. 2003. Effects of radiation quality on growth and photosynthesis of Acacia mangium seedlings. Photosynthetica 41:349-355.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔