(3.238.173.209) 您好!臺灣時間:2021/05/08 16:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳舒罄
研究生(外文):Shu-Ching Chen
論文名稱:光強度、苯濃度與介質對娃娃朱蕉移除苯之影響
論文名稱(外文):Effect of Light Intensity, Benzene Concentration, and Growing Medium on Removal of Benzene by Cordyline terminalis ‘Baby Doll’
指導教授:葉德銘葉德銘引用關係
指導教授(外文):Der-Ming Yeh
口試委員:張育森王亞男蔡智賢
口試委員(外文):Yu-Sen ChangYa-Nan WangJyh-Shyan Tsay
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:85
中文關鍵詞:二氧化碳微生物根域病態建築症候群揮發性有機物
外文關鍵詞:carbon dioxidemicroorganismsick building syndromevolatile organic compounds
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
苯為室內常見之揮發性有機物質(Volatile organic compound),具致癌性。多種室內植物能移除苯,但移除能力可能不同,本研究比較單盆娃娃朱蕉(Cordyline terminalis L. ‘Baby Doll’)、臺灣山蘇花(Asplenium nidus L.)及粗肋草‘銀后’(Aglaonema Schott ‘Silver Queen’)等三種常見室內盆栽於密閉式薰氣箱(體積0.128 m3)之苯移除速率,而後選用苯移除速率較高之娃娃朱蕉盆栽為試驗材料,探討光強度、初始苯濃度、栽培介質等因子對苯移除速率之影響,並分別探究植株地上部及根域對全株盆栽移除苯之貢獻。此外,於試驗期間測量薰氣箱內二氧化碳(CO2)濃度,以瞭解苯對植株光合作用之影響。
於含5 μL‧L-1苯之薰氣箱內,放置1盆娃娃朱蕉、臺灣山蘇花及粗肋草‘銀后’,各植物移除苯之速率分別為24.8、18.1及24.9 μg‧h-1,以娃娃朱蕉及粗肋草‘銀后’較高。雖然臺灣山蘇花移除苯速率最低,但於首日明期有最高之CO2移除量。
將包覆介質之娃娃朱蕉盆栽置於含有初始5 μL‧L-1苯之薰氣箱內,並以20、40、60、80及100 μmol‧m-2‧s-1等五種不同光強度處理,結果以80及100 μmol‧m-2‧s-1處理者之單位葉面積苯移除速率最高,而20及40 μmol‧m-2‧s-1處理者較低。光強度提高使各處理盆栽首日明期CO2移除速率增加,呈直線相關。自第二日起,薰氣箱內平均CO2濃度隨處理光強度增高而遞減。各處理植株之淨光合作用速率隨光強度增加而提升。
於含5、10、15、20及25 μL‧L-1初始濃度苯之薰氣箱內,娃娃朱蕉之苯移除速率隨苯初始濃度提高而增加,呈直線相關。5 - 25 μL‧L-1初始苯濃度不影響娃娃朱蕉的二氧化碳吸收及釋放,各處理葉片光系統Ⅱ之Fv/Fm於試驗後未下降,維持在0.79 - 0.81之間。
無論是否以PE塑膠膜包覆娃娃朱蕉盆栽之根域及盆器,在5 μL‧L-1苯處理下,盆栽經61 h(未包覆者)或123 h(有包覆者)誘導期(induction period)後移除苯能力皆上升,而包覆根域及盆器者,誘導期前後之苯移除速率皆較未包覆者低。包覆根域及盆器不影響娃娃朱蕉之CO2吸收及釋放。
於含5 μL‧L-1苯之薰氣箱內,栽植於樹皮混合介質之娃娃朱蕉,其全株盆栽(whole potted plant)、根域(root zone)及滅菌根域(root zone after sterilization)之苯移除速率皆低於栽植於泥炭苔和椰塊混合介質者。在6天試驗期間內,無論栽培介質為何,滅菌根域之苯移除速率較全株盆栽及根域低,但全株盆栽與根域之苯移除速率無顯著差異。擺放全株盆栽之薰氣箱每日CO2變化為明期下降而暗期上升;擺放植株根域者於第二日暗期CO2濃度上升,直至次日明期之第9 h,CO2濃度才下降,而後每日呈週期變化;擺放滅菌根域者於試驗第36 h起,箱內CO2濃度上升。
滅菌混合介質及種植於滅菌混合介質之娃娃朱蕉根系於試驗前48 h未能降低薰氣箱內初始5 μL‧L-1苯,而兩處理試驗48 h後之苯移除速率分別為15.2 μg‧h-1及14.2 μg‧h-1,兩處理無顯著差異。兩處理於試驗第72 h後之薰氣箱內平均CO2濃度分別為1011.0及1421.9 μL‧L-1。
擺放1、2或3盆娃娃朱蕉盆栽於含5 μL‧L-1苯之薰氣箱內,苯移除速率分別為17.0、23.4及26.0 μg‧h-1,隨擺放盆數增加而提升,且每日暗期各處理之CO2釋放量也因擺放盆數增加而提升。


Benzene is one of the common indoor volatile organic compounds and has been classified as a human carcinogen. Many indoor plants can remove benzene, althouth with various efficiency. This study aimed to compare benzene removal rates of Cordyline terminalis L. ‘Baby Doll’, Asplenium nidus L., and Aglaonema Schott ‘Silver Queen’. Results showed that Cordyline terminalis L. ‘Baby Doll’ had higher efficiency to remova benzene and thus Cordyline was selected for further studies including effect of light intensity, initial benzene concentration, and growing media on benzene removal rate. Carbon dioxide concentrations during experiments were also measured to clarify the effect of benzene on plant photosynthesis.
Potted plants of Cordyline terminalis ‘Baby Doll’, Asplenium nidus, or Aglaonema ‘Silver Queen’ plants were placed in chambers containing an initial 5 μL‧L-1 benzene. Benzene removal rate of each plant species were 24.8, 18.1, and 24.9 μg‧h-1, respectively. A higher CO2 removal rate during lighting period of day 1 was measured for Asplenium nidus.
Potted Cordyline, with root-zone wrapped Cordyline’ potted plants were placed under light intensity of 20, 40, 60, 80, and 100 μmol‧m-2‧s-1 PPF in chambers containing an initial 5 μL‧L-1 benzene. Plants under 80 and 100 μmol‧m-2‧s-1 PPF had higher benzene removal rate per leaf area than those under 20 and 40 μmol‧m-2‧s-1. Carbon dioxide removal rate during lighting period of day 1 increased linearly as light intensity increased. From day 2, carbon dioxide concentration in each treatments decreased with increasing light intensity. Net photosynthesis rate increased with increasing light intensity.
Potted plants of Cordyline were placed within chambers containing 5, 10, 15, 20, and 25 μL‧L-1 benzene. Results show that benzene removal rate increased linearly with increasing initial benzene concentration. Initial benzene concentration did not affect CO2 uptake and evolution. Benzene concentration did not alter leaf Fv/Fm, ranged between 0.79 and 0.81.
Potted plants of Cordyline exposed to an initial 5 μL‧L-1 benzene exhibited increased benzene removal rate after 61 or 123 h induction period for unwrapped-root zone and wrapped-root zone treatments, respectively. Plants with root-zone wrapped had lower benzene removal rate than those without wrapping during and after induction period. Root zone wrapping did not affect CO2 uptake and evolution of Cordyline.
When exposed to an initial 5 μL‧L-1 benzene in the chamber, Cordyline plants grown with bark-based medium had lower benzene removal rate than those grown with peat-based medium. Sterilized root zone showed consistently lower benzene removal rate than whole plant and non-sterilized root zone, whereas the benzene removal rate did not differ between the whole plant and non-sterilized root zone. Carbon dioxide decreased during light period and increased during dark period when the chamber was placed with whole plant. CO2 concentration increased in the chamber when placed with non-sterilized root zone during dark period of day 2, and CO2 did not decrease until the ninth hour of next lighting period. CO2 concentration did not increase in the chamber until 36 h after placing sterilized root zone.
Benzene concentration did not decrease during 48 h after placing sterilized medium or sterilized medium with roots when exposed to an initial 5 μL‧L-1 benzene in the chamber. After 48 h, benzene removal rate ranged beween 14.2 and 15.2 μg‧h-1 for both treatments. Average CO2 concentrations in chambers during 72 - 144 h were 1011.0 and 1421.9 μL‧L-1 for sterilized medium and sterilized medium with roots, respectively.
One, two, or three potted C. terminalis ‘Baby Doll’ had benzene removal rates of 17.0, 23.4, and 26.0 μg‧h-1, respectively when the plants were placed in chambers containing an initial 5 μL‧L-1 benzene. Benzene removal rate and CO2 concentration during dark period increased with increased number of potted plants in chambers.


目錄 I
表目錄 III
圖目錄 IV
中文摘要 VI
Abstract VIII
前言(Introduction) 1
前人研究 (Literature Review) 3
一、室內空氣品質及揮發性有機物 3
二、苯之來源及其對人體健康之影響 4
三、植物移除苯機制 6
四、運用植物移除室內揮發性有機污染物 7
五、影響植物移除苯等揮發性有機污染物的因子 9
材料與方法 14
試驗一、娃娃朱蕉、臺灣山蘇花及粗肋草‘銀后’對苯之移除效率比較及苯對植栽減少CO2之影響 14
試驗二、光強度與5 μL‧L-1苯初始濃度對包覆介質之娃娃朱蕉移除苯及其光合作用之影響 16
試驗三、苯初始濃度對娃娃朱蕉移除苯及二氧化碳速率之影響 18
試驗四、包覆根域及盆器對娃娃朱蕉移除苯速率之影響 18
試驗五、介質及根域對娃娃朱蕉移除苯能力之影響 19
試驗六、滅菌介質及娃娃朱蕉根系移除苯能力 21
試驗七、盆栽數量對娃娃朱蕉移除5 μL‧L-1苯之影響 22
試驗設計及統計分析 23
結果 (Results) 24
試驗一、娃娃朱蕉、臺灣山蘇花及粗肋草‘銀后’對苯之移除效率比較及苯對植栽減少CO2之影響 24
試驗三、苯初始濃度對娃娃朱蕉移除苯及二氧化碳速率之影響 26
試驗四、包覆根域及盆器對娃娃朱蕉移除苯速率之影響 26
試驗五、介質及根域對娃娃朱蕉移除苯能力之影響 27
試驗六、滅菌介質及娃娃朱蕉根系移除苯能力 29
試驗七、盆栽數量對娃娃朱蕉移除5 μL‧L-1苯之影響 29
討論 (Discussion) 65
結論 (Conclusions) 74
參考文獻 (References) 76
附錄 (Appendix) 85


何明昱. 2012. 室內植物移除二氧化碳能力之研究. 國立臺灣大學園藝學系碩士論文.
余軍洪. 2010. 常見室內植物移除甲醛能力之研究. 國立臺灣大學園藝學系碩士論文.
曹哲維. 2011. 栽培光度及介質對室內植物吸收苯及甲苯之影響. 國立臺灣大學植物病理與微生物學系碩士論文.
陳彥宇. 2007. 常見室內植物對甲醛及二氧化碳之吸收及反應. 國立臺灣大學植物病理與微生物學系碩士論文.
楊玉婷. 2007. 常見室內植物對苯之吸收及反應. 國立臺灣大學植物病理與微生物學系碩士論文.
Aydogan, A. and L.D. Montoya. 2011. Formaldehyde removal by common indoor plant species and various growing media. Atmos. Environ. 45:2675-2682.
Azaizeh, H., P.M. Castro, and P. Kidd. 2011. Biodegradation of organic xenobiotic pollutants in the rhizosphere. Organic Xenobiotics Plants 8:191-215.
Bjorkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504.
Bond, G.G., E.A. McLaren, C.L. Baldwin, and R.R. Cook. 1986. An update of mortality among chemical workers exposed to benzene. Brit. J. Ind. Med. 43:685-691.
Burchett, M. 2009. Towards improving indoor air quality with pot-plants − A multifactorial investigation. UTS., Sydney, Aus.
Burge, P. 2004. Sick building syndrome. Occup. Environ. Med. 61:185-190.
Chia, D.W., T.J. Yoder, W.D. Reiter, and S.I. Gibson. 2000. Fumaric acid: An overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 211:743-751.
Chiang, Y.C., P.C. Chiang, and C.P. Huang. 2001. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39:523-534.
Chuah, Y., Y. Fu, C. Hung, and P. Tseng. 1997. Concentration variations of pollutants in a work week period of an office. Build. Environ. 32:535-540.
Collins, C.D., J.N.B. Bell, and C. Crews. 2000. Benzene accumulation in horticultural crops. Chemosphere 40:109-114.
Cornejo, J.J., F.G. Munoz, C.Y. Ma, and A.J. Stewart. 1999. Studies on the decontamination of air by plants. Ecotoxicology 8:311-320.
Darlington, A., M. Chan, D. Malloch, C. Pilger, and M.A. Dixon. 2000. The biofiltration of indoor air: Implications for air quality. Indoor Air 10:39-46.
DeEll, J.R., O. van Kooten, R.K. Prange, and D.P. Murr. 1999. Applications of chlorophyll fluorescence techniques in postharvest physiology. Hort. Rev 23:69-107.
Ferro, A., J. Kennedy, W. Doucette, S. Nelson, G. Jauregui, B. McFarland, and B. Bugbee. 1997. Fate of benzene in soils planted with alfalfa: Uptake, volatilization, and degradation. p. 233-237. In: Kruger1, E.L., T.A. Anderson, J.R. Coats (eds.). Phytoremediation of Soil and Water Contaminants. ACS Publications, Washington D.C., USA.
Fruin, S.A., M.J.S. Denis, A.M. Winer, S.D. Colome, and F.W. Lurmann. 2001. Reductions in human benzene exposure in the California South Coast Air Basin. Atmos. Environ. 35:1069-1077.
Gibson, D.T., G. Cardini, F. Maseles, and R.E. Kallio. 1970. Oxidative degradation of aromatic hydrocarbons by microorganisms. IV. Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry 9:1631-1635.
Gibson, D.T., J. Koch, C.L. Schuld, and R.E. Kallio. 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry 7:3795-3802.
Godish, T. 1995. Sick buildings: Definition, diagnosis, and mitigation. Lewis Publishers, Boca Raton, FL.
Griffith, L.P. 2006. Tropical foliage plants. 2nd ed. Ball Publishing, Batavia, IL., USA.
Guillen, F., M.a.J. Martı́nez, C. Munoz, and A.T. Martı́nez. 1997. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch. Biochem. Biophys. 339:190-199.
Hodgson, A.T., D. Faulkner, D.P. Sullivan, D.L. DiBartolomeo, M.L. Russell, and W.J. Fisk. 2003. Effect of outside air ventilation rate on volatile organic compound concentrations in a cell center. Atmos. Environ. 37:5517-5527.
Holcomb, L.C. and B.S. Seabrook. 1995. Review: Indoor concentrations of volatile organic compounds: Implications for comfort, health and regulation. Indoor Built. Environ. 4:7-26.
Hsu, Y.C, P.Y. Kung, T.N. Wu, and Y.H. Shen. 2012. Characterization of indoor-air bioadrosols in southern Taiwan. Aeros. Air Res. 12:651-661
Hun, D.E., R.L. Corsi, M.T. Morandi, and J.A. Siegel. 2011. Automobile proximity and indoor residential concentrations of BTEX and MTBE. Building Environ. 46:45-53.
Jansen, E.F. and A.C. Olson. 1969. Metabolism of carbon-14-labeled benzene and tolueue in avocado fruit. Plant Physiol. 44:786.
Kataoka, H., Y.Ohashi, T. Mamiya, K. Nami, K. Saito, K. Ohcho, and T. Takigawa. 2012. Indoor air monitoring of volatile organic compounds and evaluation of their emission from various building materials and common products by gas chromatography-mass spectrometry. p. 161-184. In: M.A. Mohd (ed.). Advanced gas Chromatography - Progress in Agricultural, Biomedical and industrial applications. InTech, Rijeka, Croatia.
Kim, K.J., C.S. Kang, Y.J. You, M.C. Chung, M.W. Woo, W.J. Jeong, N.C. Park, and H.G. Ahn. 2006. Adsorption–desorption characteristics of VOCs over impregnated activated carbons. Catal. Today 111:223-228.
Kim, K.J., M.J. Kil, J.S. Song, E.H. Yoo, K.C. Son, and S.J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci. 133:521-526.
Klepeis, N.E., W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J.V. Behar, S.C. Hern, and W.H. Engelmann. 2001. The national human activity pattern survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 11:231-252.
Knudsen, H.N., U. Kjaer, P. Nielsen, and P. Wolkoff. 1999. Sensory and chemical characterization of VOC emissions from building products: impact of concentration and air velocity. Atmos. Environ. 33:1217-1230.
Korte, F., G. Kvesitadze, D. Ugrekhelidze, M. Gordeziani, G. Khatisashvili, O. Buadze, G. Zaalishvili, and F. Coulston. 2000. Organic toxicants and plants. Ecotox. Environ. Saf. 47:1-26.
Kvesitadze, E., T. Sadunishvili, and G. Kvesitadze. 2009. Mechanisms of organic contaminants uptake and degradation in plants. World Acad. Sci. Eng. Tech. 55:458-468
Lai, H.K., M.J. Jantunen, N. Kunzli, E. Kulinskaya, R. Colvile, and M.J. Nieuwenhuijsen. 2007. Determinants of indoor benzene in Europe. Atmos. Environ. 41:9128-9135.
Lan, Q., L. Zhang, G. Li, R. Vermeulen, R.S. Weinberg, M. Dosemeci, S.M. Rappaport, M. Shen, B.P. Alter, and Y. Wu. 2004. Hematotoxicity in workers exposed to low levels of benzene. Science 306:1774-1776.
Liu, Y.J., Y.J. Mu, Y.G. Zhu, H. Ding, and N.C. Arens. 2007. Which ornamental plant species effectively remove benzene from indoor air? Atmos. Environ.41:650-654.
Luo, Y. and X. Zhou. 2010. Soil respiration and the environment.1st ed. Elsevier, San Diego, California, USA.
Missia, D.A., E. Demetriou, N. Michael, E.I. Tolis, and J.G. Bartzis. 2010. Indoor exposure from building materials: A field study. Atmos. Environ. 44:4388-4395.
Molhave, L., B. Bach, and O. Pedersen. 1986. Human reactions to low concentrations of volatile organic compounds. Environ. Intl. 12:167-175.
Neales, T. and J. Davies. 1966. The effect of photoperiod duration upon the respiratory activity of the roots of wheat seedlings. Austral. J. Biol. Sci. 19:471-480.
Ohura, T., T. Amagai, X. Shen, S. Li, P. Zhang, and L. Zhu. 2009. Comparative study on indoor air quality in Japan and China: Characteristics of residential indoor and outdoor VOCs. Atmos. Environ. 43:6352-6359.
Orwell, R., R. Wood, J. Tarran, F. Torpy, and M. Burchett. 2004. Removal of benzene by the indoor plant/substrate microcosm and implications for air quality. Water Air Soil Pollu. 157:193-207.
Orwell, R., R. Wood, M. Burchett, J. Tarran, and F. Torpy. 2006. The potted-plant microcosm substantially reduces indoor air VOC pollution: II. laboratory study. Water Air Soil Pollut. 177:59-80.
Perry, R. and I.L. Gee. 1995. Vehicle emissions in relation to fuel composition. Sci. Total Environ. 169:149-156.
Pierotti, R. and J. Rouquerol. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57:603-619.
Redlich, C.A., J. Sparer, and M.R. Cullen. 1997. Sick-building syndrome. The Lancet 349:1013-1016.
Rinsky, R.A. 1989. Benzene and leukemia: An epidemiologic risk assessment. Environ. Health Persp. 82:189-191.
Rottenberger, S., U. Kuhn, A. Wolf, G. Schebeske, S. Oliva, T. Tavares, and J. Kesselmeier. 2004. Exchange of short-chain aldehydes between Amazonian vegetation and the atmosphere. Ecol. Appl. 14:247-262.
Rottenberger, S., U. Kuhn, A. Wolf, G. Schebeske, S. Oliva, T. Tavares, and J. Kesselmeier. 2005. Formaldehyde and acetaldehyde exchange during leaf development of the Amazonian deciduous tree species Hymenaea courbaril. Atmos. Environ. 39:2275-2279.
Sanchez-Ferrer, A., J.N. Rodriguez-Lopez, F. Garcia-Canovas, and F. Garcia-Carmona. 1995. Tyrosinase: A comprehensive review of its mechanism. Biochimica et Biophysica Acta 1247:1-11.
Schmitz, H., U. Hilgers, and M. Weidner. 2000. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol. 147:307-315.
Smith, M.T., L. Zhang, C.M. McHale, C.F. Skibola, and S.M. Rappaport. 2011. Benzene, the exposome and future investigations of leukemia etiology. Chem. Biol. Interact. 192:155-159.
Song, J.E., Y.S. Kim, and J.Y. Sohn. 2007. The impact of plants on the reduction of volatile organic compounds in a small space. J. Physiol. Anthropol. 26:599-603.
Thomas, K., E. Pellizzari, C. Clayton, R. Perritt, R. Dietz, R. Goodrich, W. Nelson, and L. Wallace. 1993. Temporal variability of benzene exposures for residents in several New Jersey homes with attached garages or tobacco smoke. J. Expo. Anal. Environ. Epidemiol. 3(1):49. (abstr.).
Tichenor, B.A. and M.A. Mason. 1988. Organic emissions from consumer products and building materials to the indoor environment. J. Air Pollut. Contr. Assoc. 38:264-268.
Treesubsuntorn, C. and P. Thiravetyan. 2012. Removal of benzene from indoor air by Dracaena sanderiana: Effect of wax and stomata. Atmos. Environ. 57:317-321. U.S. Environmental Protection Agency. 2008. Indoor Air Quality, Indoor Air Facts, NO.4. Sick Building Syndrome. Indoor Air Home, Washington, D.C. 6 April 2010. < http://www.epa.gov/iaq/pubs/sbs.html>
Turiel, I., C. Hollowell, R. Miksch, J. Rudy, R. Young, and M. Coye. 1983. The effects of reduced ventilation on indoor air quality in an office building. Atmos. Environ. 17:51-64.
Ugrekhelidze, D., F. Korte, and G. Kvesitadze. 1997. Uptake and transformation of benzene and toluene by plant leaves. Ecotox. Environ. Safe 37:24-29.
Wallace, L.A. 1989. Major sources of benzene exposure. Environ. Health Persp. 82:165.
Wallace, L.A. 2001. Human Exposure to Volatile Organic Pollutants: Implications for Indoor Air Studies 1. Annual review of energy and the environment 26:269-301.
Wallace, L.A., E. Pellizzari, B. Leaderer, H. Zelon, and L. Sheldon. 1987. Emissions of volatile organic compounds from building materials and consumer products. Atmos. Environ. 21:385-393.
Wang, Z. and J.S. Zhang. 2011. Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build. Environ. 46:758-768.
Weschler, C.J. 2009. Changes in indoor pollutants since the 1950s. Atmos. Environ. 43:153-169.
WHO. 1982. Some industrial chemicals and dyestuffs. WHO, Geneva.
Wolverton, B.C. 1988. Foliage plants for improving indoor air quality. Report. National Aeronautics and Space Administration, Stennis Space Center, Mississippi.
Wolverton, B.C. and J.D. Wolverton. 1993. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J. MS. Acad. Sci. 38:11-15.
Wolverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plants for indoor air pollution abatement. Report. National Aeronautics and Space Administration, Stennis Space Center, Mississippi.
Wood, R., M. Burchett, R. Alquezar, R. Orwell, J. Tarran, and F. Torpy. 2006. The potted-plant microcosm substantially reduces indoor air VOC pollution: I. office field-study. Water Air Soil Pollut. 175:163-180.
Wood, R., R. Orwell, J. Tarran, F. Torpy, and M. Burchett. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. J. Hort. Sci. Biotech. 77:120-129.
Wood, R., R. Orwell, J. Tarran, F. Torpy, and M. Burchett. 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. J. Hort. Sci.Biotechnol. 77:120-129.
World Health Organization. 2010. WHO guidelines for indoor air quality: selected pollutants. Copenhagen O, Denmark.
<http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf>
Xie, S., W. Sun, C. Luo, and A. Cupples. 2011. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation 22:71-81.
Xu, Z., L. Wang, and H. Hou. 2011. Formaldehyde removal by potted plant-soil systems. J. Hazard. Mater. 192:314-318.
Yang, D.S., S.V. Pennisi, K.-C. Son, and S.J. Kays. 2009. Screening indoor plants for volatile organic pollutant removal efficiency. HortScience 44:1377-1381.
Yoo, M.H., Y.J. Kwon, K.C. Son, and S.J. Kays. 2006. Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. J. Amer. Soc. Hort. Sci.131:452-458.
Zhang, J.F. and K.R. Smith. 2003. Indoor air pollution: A global health concern. Brit. Med. Bull. 68:209-225.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔