(3.236.231.61) 您好!臺灣時間:2021/05/11 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉紀秀
研究生(外文):Chi-Hsiu Liu
論文名稱:神經元中間絲蛋白α-Internexin在雞動物模式中的分子選殖與表現分析
論文名稱(外文):Molecular Cloning and Characterization of Chicken Neuronal Intermediate Filament Protein α-Internexin
指導教授:錢宗良錢宗良引用關係
口試委員:盧國賢丁詩同王一中郭余民
口試日期:2013-06-06
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:解剖學暨生物細胞學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:124
中文關鍵詞:α-internexin神經元中間絲蛋白雞胚發育
外文關鍵詞:α-internexinneurofilamentchicken embryodevelopment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
α-internexin是一種神經元中間絲蛋白。根據之前的研究,在哺乳動物發育的過程中,α-internexin表現於發育早期的神經系統,且表現時間早於神經元中間絲蛋白三合體(neurofilament triplet proteins:NFL, NFM and NFH)。有別於在細胞中形成異質聚合物(heteropolymers)的神經元中間絲蛋白三合體,α-internexin具有形成均質聚合物(homopolymers)的能力。這些研究結果顯示α-internexin與神經元中間絲蛋白三合體為不同的細胞骨架蛋白,並在早期神經發育扮演重要的角色。
雞是一種古老且重要的模式動物,也是第一個被全基因定序的非哺乳類動物,牠填補了哺乳類與其他脊椎動物在演化學研究上的空缺。目前已知有部分的雞神經中間絲蛋白已被選殖與定性,但沒有相關研究探討α-internexin在鳥類神經發育過程中的的表現與生理機制。因此,於本研究中我們以雞為動物模式來研究α-internexin基因及其特性與功能。首先,我們自雞的基因體中辨別並選殖雞的α-internexin同源基因,確認基因序列、結構與其在雞胚發育過程中之表現情形。同時,我們利用該基因序列製作雞α-internexin的多株抗體,確認其效力與專一性,並應用於後續的實驗。研究結果顯示,雞α-internexin (chkINA)與哺乳類、兩棲類以及魚類的α-internexin具高度的基因序列相似性。在體外基因轉染實驗(transient transfection)中可觀察到chkINA能夠在轉染細胞裡形成絲狀結構,並且能與細胞內生性的中間絲聚合在同一細胞骨架網絡中。利用聚合酶鏈鎖反應及西方點墨轉漬法,我們發現chkINA主要表現在雞的中樞神經系統中;在發育中的雞胚裡,chkINA在腦部的表現量隨生長過程遞增。免疫組織化學染色的結果顯示,chkINA廣泛地分布在雞腦中,並與神經中間絲蛋白三合體形成絲狀結構。我們亦發現chkINA在發育中的小腦表現量相當豐富,且為小腦顆粒神經元(granule neurons)所衍生之平行纖維(parallel fibers)中主要的細胞中間絲蛋白。此外,chkINA也被觀察到會短暫地表現在發育中的視網膜各類神經細胞內,然而其分布情形隨發育過程的推衍而漸趨受限於視網膜之神經節細胞(ganglion cells)、無軸突細胞(amacrine cells)以及水平細胞(horizontal cells)中。
綜合本研究所獲得的結果,我們認為chkINA為神經元特定表現之中間絲蛋白,可作為發育中之神經細胞的標記物,應用於以雞為模式生物之神經科學研究,並將可提供演化發育生物學以及生物資訊學研究更多的線索。


α-Internexin is one of the neuronal intermediate filament (IF) proteins, which also include peripherin and neurofilament (NF) triplet proteins designated as NFL, NFM and NFH for low, middle and high molecular weight subunits, respectively. It is expressed by most neurons as the differentiation begins and precedes the expression of the NF triplet proteins in mammals. Unlike the NF triplets which are obligate heteropolymers, α-internexin has the ability to form homopolymers. These studies have supported the belief that α-internexin and NF triplet form separate filament systems. The chicken is an important model organism that bridges the evolutionary gap between mammals and other vertebrates. It also represents the first non-mammalian amnitoe to have its genome sequenced. The chicken embryo is a useful model system in developmental biology due to experimental advantages of in ovo embryogenesis. Some neuronal IF genes of chicken were cloned in previous studies. Still, little is known about the gene sequence and physiological function of the neuronal IF α-internexin in avian.
In this study, we aim to identify the mRNA sequence encoding chicken α-internexin and to characterize the gene structures and expression levels during developmental process. Human, mouse, rat, frog and zebrafish α-internexin sequences were used to search for orthologues. The putative chicken α-internexin (chkINA) cDNA was generated via RT-PCR of total chicken brain RNA. The gene structures and predicted amino acid sequence of chkINA revealed a high similarity with the homologues from human, mouse, rat, bovine, frog, and zebrafish. Transient transfection assay showed that the filamentous pattern of chkINA could be found in transfected cells, and colocalized with other endogenous IFs by demonstration of immunocytochemistry with chicken-specific antibody. The expression of chkINA was detected in early stage of development and during developmental process. Moreover, chkINA was widely expressed in chicken brains and retinae, and was colocalized in fibrous patterns with NF triplet proteins. chkINA was also expressed abundantly in the developing cerebellum and was the major IF protein in the parallel fibers of granule neurons. In addition, chkINA could be transiently detected in all neuronal lineages in the developing chicken retina; however, as development progressed, chkINA expression became restricted to the nerve fibers of ganglion, amacrine and horizontal cells. Thus, we conjecture that chkINA might be a neuron-specific IF protein and could be a useful marker to be applied to neurobiological studies in chicken. The annotation of chkINA may be applied for neuroscience research. In addition, this may fill the gaps of the molecular evolution of neural intermediate filaments, and provide hints in genomics, evolutionary developmental biology or bioinformatics.


Acknowledgement------------------------------------------------------------ i
Abbreviation ------------------------------------------------------------------ iii
Summary of Dissertation in Chinese -------------------------------------- 1
Summary of Dissertation in English -------------------------------------- 3
Chapter I. General Introduction ---------------------------------------- 5
Introduction of Intermediate Filaments --------------------------------------------- 6
Neuronal Intermediate Filament Proteins ------------------------------------------- 7
α-Internexin ----------------------------------------------------------------------------- 8
The Chicken Model -------------------------------------------------------------------- 9
The Chicken Genome ------------------------------------------------------------------ 10
Specific Aims of Current Study ------------------------------------------------------ 11
Chapter II. Molecular Cloning and Characterization of Chicken Neuronal Intermediate Filament Protein α-Internexin ------------- 15
Abstract----------------------------------------------------------------------------------- 16
Introduction ----------------------------------------------------------------------------- 17
Materials and Methods ----------------------------------------------------------------- 21
Results ----------------------------------------------------------------------------------- 31
Discussion ------------------------------------------------------------------------------- 40
Figure legends, Figures and Tables--------------------------------------------------- 47
Chapter III. Neuronal Intermediate Filament α-Internexin is Expressed by Neuronal lineages in the Developing Chicken Retina ------------------------------------------------------------------------- 73
Abstract----------------------------------------------------------------------------------- 74
Introduction ----------------------------------------------------------------------------- 75
Materials and Methods ----------------------------------------------------------------- 78
Results ----------------------------------------------------------------------------------- 81
Discussion ------------------------------------------------------------------------------- 86
Figure legends, Figures and Tables--------------------------------------------------- 92
Chapter IV. Conclusions and Future Perspective -------------------- 105
Bibliography ----------------------------------------------------------------- 116
Appendix --------------------------------------------------------------------- 124


Altman, J., 1972a. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol. 145, 353-97.
Altman, J., 1972b. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol. 145, 399-463.
Ananthakrishnan, L., Szaro, B.G., 2009. Transcriptional and translational dynamics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration. Brain Res. 1250, 27-40.
Bartel, D.P., 2009. MicroRNAs: target recognition and regulatory functions. Cell. 136, 215-33.
Beaulieu, J.M., Robertson, J., Julien, J.P., 1999. Interactions between peripherin and neurofilaments in cultured cells: disruption of peripherin assembly by the NF-M and NF-H subunits. Biochem Cell Biol. 77, 41-5.
Belecky-Adams, T., et al., 1997. Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest Ophthalmol Vis Sci. 38, 1293-303.
Belecky-Adams, T.L., Adler, R., 1999. Development expression patterns of bone morphogenetic protein family members and receptors in the chick eye. Invest Ophthalmol Vis Sci. 40, S454-S454.
Bennett, G.S., et al., 1984. Differential binding of antibodies against the neurofilament triplet proteins in different avian neurons. Brain Res. 304, 291-302.
Bennett, G.S., DiLullo, C., 1985. Transient expression of a neurofilament protein by replicating neuroepithelial cells of the embryonic chick brain. Dev Biol. 107, 107-27.
Bourque, G., et al., 2005. Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. Genome Res. 15, 98-110.
Boyne, L.J., Fischer, I., Shea, T.B., 1996. Role of vimentin in early stages of neuritogenesis in cultured hippocampal neurons. Int J Dev Neurosci. 14, 739-48.
Burgoyne, R.D., Cambray-Deakin, M.A., 1988. The cellular neurobiology of neuronal development: the cerebellar granule cell. Brain Res. 472, 77-101.
Burt, D.W., 2004a. Chicken genomics charts a path to the genome sequence. Brief Funct Genomic Proteomic. 3, 60-7.
Burt, D.W., 2004b. The chicken genome and the developmental biologist. Mech Dev. 121, 1129-35.
Cairns, N.J., et al., 2004. alpha-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol. 164, 2153-61.
Caminos, E., et al., 1999. Protein kinase C-like immunoreactive cells in embryo and adult chicken retinas. Brain Res Dev Brain Res. 118, 227-30.
Carter, J.E., et al., 1997. Incorporation of NF-L into keratin filaments in transfected epithelial cells. Neuroreport. 8, 2225-8.
Chada, S., et al., 1997. Cytomechanics of neurite outgrowth from chick brain neurons. J Cell Sci. 110 (Pt 10), 1179-86.
Chan, S.O., Chiu, F.C., 1995. Cloning and developmental expression of human 66 kd neurofilament protein. Brain Res Mol Brain Res. 29, 177-84.
Chang, L., Goldman, R.D., 2004. Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol. 5, 601-13.
Charvet, C.J., Striedter, G.F., 2009. Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis. Proc Biol Sci. 276, 3421-7.
Charvet, C.J., Striedter, G.F., 2011. Developmental Modes and Developmental Mechanisms can Channel Brain Evolution. Front Neuroanat. 5, 4.
Chien, C.L., Liem, R.K., 1994. Characterization of the mouse gene encoding the neuronal intermediate filament protein alpha-internexin. Gene. 149, 289-92.
Chien, C.L., Liem, R.K., 1995. The neuronal intermediate filament, alpha-internexin is transiently expressed in amacrine cells in the developing mouse retina. Exp Eye Res. 61, 749-56.
Chien, C.L., Mason, C.A., Liem, R.K., 1996. alpha-Internexin is the only neuronal intermediate filament expressed in developing cerebellar granule neurons. J Neurobiol. 29, 304-18.
Ching, G.Y., Liem, R.K., 1991. Structure of the gene for the neuronal intermediate filament protein alpha-internexin and functional analysis of its promoter. J Biol Chem. 266, 19459-68.
Ching, G.Y., Liem, R.K., 1993. Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J Cell Biol. 122, 1323-35.
Ching, G.Y., Liem, R.K., 1998. Roles of head and tail domains in alpha-internexin''s self-assembly and coassembly with the neurofilament triplet proteins. J Cell Sci. 111 ( Pt 3), 321-33.
Ching, G.Y., et al., 1999. Overexpression of alpha-internexin causes abnormal neurofilamentous accumulations and motor coordination deficits in transgenic mice. J Neurosci. 19, 2974-86.
Ching, G.Y., Liem, R.K., 1999. Analysis of the roles of the head domains of type IV rat neuronal intermediate filament proteins in filament assembly using domain-swapped chimeric proteins. J Cell Sci. 112 (Pt 13), 2233-40.
Ching, G.Y., Liem, R.K., 2009. RE1 silencing transcription factor is involved in regulating neuron-specific expression of alpha-internexin and neurofilament genes. J Neurochem. 109, 1610-23.
Chiu, F.C., et al., 1989. Characterization of a novel 66 kd subunit of mammalian neurofilaments. Neuron. 2, 1435-45.
Cochard, P., Paulin, D., 1984. Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci. 4, 2080-94.
Cooper, G.M., Hausman, R.E., 2003. The cell: a molecular approach, 3rd Ed, Sinauer, Sunderland, MA.
Dahlstrand, J., Lardelli, M., Lendahl, U., 1995. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res. 84, 109-29.
Dai, F., et al., 2005. RNAi-induced targeted silencing of developmental control genes during chicken embryogenesis. Dev Biol. 285, 80-90.
Darenfed, H., et al., 2001. Molecular polymorphism of the intermediate filament protein transitin. Histochem Cell Biol. 116, 397-409.
Darwin, C., 1896. The Variation of Animals and Plants Under Domestication, D. Appletion and Co., New York.
Doh, S.T., et al., 2010. Analysis of retinal cell development in chick embryo by immunohistochemistry and in ovo electroporation techniques. BMC Dev Biol. 10, 8.
Drager, U.C., Edwards, D.L., Barnstable, C.J., 1984. Antibodies against filamentous components in discrete cell types of the mouse retina. J Neurosci. 4, 2025-42.
Duprey, P., Paulin, D., 1995. What can be learned from intermediate filament gene regulation in the mouse embryo. Int J Dev Biol. 39, 443-57.
Dyer, M.A., et al., 2003. Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet. 34, 53-8.
Edqvist, P.H., Myers, S.M., Hallbook, F., 2006. Early identification of retinal subtypes in the developing, pre-laminated chick retina using the transcription factors Prox1, Lim1, Ap2alpha, Pax6, Isl1, Isl2, Lim3 and Chx10. Eur J Histochem. 50, 147-54.
Eyal-Giladi, H., Kochav, S., Yerushalmi, S., 1975. The sorting-out of thymidine-labelled chick hypoblast cells in mixed epiblast--hypoblast aggregates. Differentiation. 4, 57-60.
Fliegner, K.H., Liem, R.K., 1991. Cellular and molecular biology of neuronal intermediate filaments. Int Rev Cytol. 131, 109-67.
Fliegner, K.H., et al., 1994. Expression of the gene for the neuronal intermediate filament protein alpha-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. J Comp Neurol. 342, 161-73.
Fumihito, A., et al., 1994. One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc Natl Acad Sci U S A. 91, 12505-9.
Gervasi, C., Thyagarajan, A., Szaro, B.G., 2003. Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons. J Comp Neurol. 461, 262-75.
Gilad, G.M., Gilad, V.H., Dahl, D., 1989. Expression of neurofilament immunoreactivity in developing rat cerebellum in vitro and in vivo. Neurosci Lett. 96, 7-12.
Glasgow, E., et al., 1994. Molecular cloning of gefiltin (ON1): serial expression of two new neurofilament mRNAs during optic nerve regeneration. EMBO J. 13, 297-305.
Gutierrez, C., McNally, M., Canto-Soler, M.V., 2011. Cytoskeleton proteins previously considered exclusive to ganglion cells are transiently expressed by all retinal neuronal precursors. BMC Dev Biol. 11, 46.
Hamburger, V., Hamilton, H.L., 1951. A Series of Normal Stages in the Development of the Chick Embryo. J Morphol. 88, 49-&.
Henion, P.D., et al., 2000. Avian transitin expression mirrors glial cell fate restrictions during neural crest development. Dev Dyn. 218, 150-9.
Herrmann, H., Aebi, U., 2004. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem. 73, 749-89.
Herrmann, H., et al., 2007. Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol. 8, 562-73.
International Chicken Genome Sequencing Consortium, 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 432, 695-716.
Itasaki, N., Bel-Vialar, S., Krumlauf, R., 1999. ''Shocking'' developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol. 1, E203-7.
Kahn, A.J., 1973. Ganglion cell formation in the chick neural retina. Brain Res. 63, 285-90.
Kahn, A.J., 1974. An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. Dev Biol. 38, 30-40.
Kaplan, M.P., et al., 1990. Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci. 10, 2735-48.
Knabe, W., et al., 2007. Development of starburst cholinergic amacrine cells in the retina of Tupaia belangeri. J Comp Neurol. 502, 584-97.
Lariviere, R.C., Julien, J.P., 2004. Functions of intermediate filaments in neuronal development and disease. J Neurobiol. 58, 131-48.
Leake, D., et al., 1999. Gefiltin in zebrafish embryos: sequential gene expression of two neurofilament proteins in retinal ganglion cells. Differentiation. 65, 181-9.
Lee, M.K., et al., 1993. Neurofilaments are obligate heteropolymers in vivo. J Cell Biol. 122, 1337-50.
Lee, M.K., Cleveland, D.W., 1996. Neuronal intermediate filaments. Annu Rev Neurosci. 19, 187-217.
Lendahl, U., Zimmerman, L.B., McKay, R.D., 1990. CNS stem cells express a new class of intermediate filament protein. Cell. 60, 585-95.
Levavasseur, F., Zhu, Q., Julien, J.P., 1999. No requirement of alpha-internexin for nervous system development and for radial growth of axons. Brain Res Mol Brain Res. 69, 104-12.
Liem, R.K., 1990. Neuronal intermediate filaments. Curr Opin Cell Biol. 2, 86-90.
Liem, R.K., 1993. Molecular biology of neuronal intermediate filaments. Curr Opin Cell Biol. 5, 12-6.
Lin, J., Luo, J., Redies, C., 2008. Molecular cloning and expression analysis of three cadherin-8 isoforms in the embryonic chicken brain. Brain Res. 1201, 1-14.
Liu, C.H., Chien, C.L., 2012. Molecular cloning and characterization of chicken neuronal intermediate filament protein alpha-internexin. J Comp Neurol.
Liu, Y., Szaro, B.G., 2011. hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. Development. 138, 3079-90.
Liu, Y., et al., 2012. Heterogeneous Nuclear Ribonucleoprotein K, an RNA-Binding Protein, Is Required for Optic Axon Regeneration in Xenopus laevis. J Neurosci. 32, 3563-74.
Lu, Y., Lin, C., Wang, X., 2009. PiggyBac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Res. 37, e141.
McCabe, K.L., Gunther, E.C., Reh, T.A., 1999. The development of the pattern of retinal ganglion cells in the chick retina: mechanisms that control differentiation. Development. 126, 5713-24.
Meller, K., Tetzlaff, W., 1976. Scanning electron microscopic studies on the development of the chick retina. Cell Tissue Res. 170, 145-59.
Napier, A., Yuan, A., Cole, G.J., 1999. Characterization of the chicken transitin gene reveals a strong relationship to the nestin intermediate filament class. J Mol Neurosci. 12, 11-22.
Nixon, R.A., Shea, T.B., 1992. Dynamics of neuronal intermediate filaments: a developmental perspective. Cell Motil Cytoskeleton. 22, 81-91.
Oshima, R.G., 2007. Intermediate filaments: a historical perspective. Exp Cell Res. 313, 1981-94.
Ostrum, J.H., 1975. The Origin of Birds. Annual Review of Earth and Planetary Sciences. 3, 55-77.
Pachter, J.S., Liem, R.K., 1985. alpha-Internexin, a 66-kD intermediate filament-binding protein from mammalian central nervous tissues. J Cell Biol. 101, 1316-22.
Parry, D.A., Steinert, P.M., 1992. Intermediate filament structure. Curr Opin Cell Biol. 4, 94-8.
Parry, D.A., Steinert, P.M., 1999. Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Q Rev Biophys. 32, 99-187.
Parry, D.A., et al., 2007. Towards a molecular description of intermediate filament structure and assembly. Exp Cell Res. 313, 2204-16.
Perrot, R., et al., 2008. Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol. 38, 27-65.
Prada, C., et al., 1991. Spatial and Temporal Patterns of Neurogenesis in the Chick Retina. Eur J Neurosci. 3, 1187.
Prasov, L., Glaser, T., 2012. Dynamic expression of ganglion cell markers in retinal progenitors during the terminal cell cycle. Mol Cell Neurosci. 50, 160-8.
Ramon y Cajal, S., 1911. Histologie du systeme nerveux de l''homme et des vertebres, Vol. 2, Instituto Ramon y Cajal, Madrid.
Redies, C., Takeichi, M., 1993. N- and R-cadherin expression in the optic nerve of the chicken embryo. Glia. 8, 161-71.
Riederer, B.M., Porchet, R., Marugg, R.A., 1996. Differential expression and modification of neurofilament triplet proteins during cat cerebellar development. J Comp Neurol. 364, 704-17.
Schwartz, M.L., et al., 1990. Axonal dependency of the postnatal upregulation in neurofilament expression. J Neurosci Res. 27, 193-201.
Sereno, P.C., 1999. The evolution of dinosaurs. Science. 284, 2137-47.
Shaw, G., Weber, K., 1982. Differential expression of neurofilament triplet proteins in brain development. Nature. 298, 277-9.
Shaw, G., Weber, K., 1983. The structure and development of the rat retina: an immunofluorescence microscopical study using antibodies specific for intermediate filament proteins. Eur J Cell Biol. 30, 219-32.
Shaw, G., Weber, K., 1984. The intermediate filament complement of the retina: a comparison between different mammalian species. Eur J Cell Biol. 33, 95-104.
Shaw, G., 1989. Identification of previously unrecognized sequence motifs at the extreme carboxyterminus of the neurofilament subunit NF-M. Biochem Biophys Res Commun. 162, 294-9.
Sihag, R.K., et al., 2007. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res. 313, 2098-109.
Spence, S.G., Robson, J.A., 1989. An autoradiographic analysis of neurogenesis in the chick retina in vitro and in vivo. Neuroscience. 32, 801-12.
Starck, J.M., Ricklefs, R.E., 1998. Avian growth and development : evolution within the altricial-precocial spectrum, Oxford University Press, New York.
Steinert, P.M., Marekov, L.N., Parry, D.A., 1999. Molecular parameters of type IV alpha-internexin and type IV-type III alpha-internexin-vimentin copolymer intermediate filaments. J Biol Chem. 274, 1657-66.
Stern, C.D., 2005. The chick; a great model system becomes even greater. Dev Cell. 8, 9-17.
Szaro, B.G., Whitnall, M.H., Gainer, H., 1990. Phosphorylation-dependent epitopes on neurofilament proteins and neurofilament densities differ in axons in the corticospinal and primary sensory dorsal column tracts in the rat spinal cord. J Comp Neurol. 302, 220-35.
Szaro, B.G., Strong, M.J., 2010. Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends Neurosci. 33, 27-37.
Tajika, M., et al., 2004. Neuronal intermediate filament in the developing rat retina. Acta Histochemica Et Cytochemica. 37, 95-99.
Thyagarajan, A., Strong, M.J., Szaro, B.G., 2007. Post-transcriptional control of neurofilaments in development and disease. Exp Cell Res. 313, 2088-97.
Torelli, S., et al., 1989. Developmental expression of intermediate filament proteins in the chick embryo retina: in vivo and in vitro comparison. Exp Biol. 48, 187-96.
Tseng, K.W., Lu, K.S., Chien, C.L., 2006. A possible cellular mechanism of neuronal loss in the dorsal root ganglia of Dystonia musculorum (dt) mice. J Neuropathol Exp Neurol. 65, 336-47.
Vitadello, M., Denis-Donini, S., 1990. Expression of neurofilament proteins in granule cells of the cerebellum. Brain Res. 509, 47-54.
Wakamatsu, Y., et al., 2007. Transitin, a nestin-like intermediate filament protein, mediates cortical localization and the lateral transport of Numb in mitotic avian neuroepithelial cells. Development. 134, 2425-33.
Walker, K.L., et al., 2001. Loss of neurofilaments alters axonal growth dynamics. J Neurosci. 21, 9655-66.
Wirth, M.J., et al., 2008. Identification of auditory neurons by retrograde labelling for patch-clamp recordings in a mixed culture of chick brainstem. J Neurosci Methods. 169, 55-64.
Yamagata, K., et al., 1990. Visinin: a novel calcium binding protein expressed in retinal cone cells. Neuron. 4, 469-76.
Yuan, A., et al., 2003. Neurofilament transport in vivo minimally requires hetero-oligomer formation. J Neurosci. 23, 9452-8.
Yuan, A., et al., 2006. Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci. 26, 10006-19.
Zhao, Y., Szaro, B.G., 1997. Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L. J Comp Neurol. 377, 351-64.
Zopf, D., et al., 1987. Identification of gene products expressed in the developing chick visual system: characterization of a middle-molecular-weight neurofilament cDNA. Genes Dev. 1, 699-708.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔