(3.236.231.61) 您好!臺灣時間:2021/05/11 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁正勳
研究生(外文):Cheng-Hsun Weng
論文名稱:時間序列的複雜度
論文名稱(外文):Complexity of time series
指導教授:劉長遠
指導教授(外文):Cheng-Yuan Liou
口試委員:呂育道鄭為正黃昭綺
口試委員(外文):Yuh-Dauh LyuuWei-Chen ChengJau-Chi Huang
口試日期:2013-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:26
中文關鍵詞:結構複雜度樹結構表示法時間序列上下文無關文法L系統
外文關鍵詞:Structural complexityTree representationTime seriesContext-free grammarLsystem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
複雜度分析是現代分子生物學中的一個重要領域。目前有許多的工
具和技術可以來幫助我們測量序列整體的結構特性。本篇論文中,我
們介紹一個方法來計算序列的複雜度。先前的研究可應用在DNA序列
和文本序列中。基於這些成果,我們運用此方法來計算時間序列的複
雜度。計算時間序列複雜度的方式為將時間序列轉換成兩個符號的序
列或四個符號的序列並且計算其複雜度。並且,我們也比較不同的時
間序列的複雜度來觀查它們之間的關係。我們分析了幾個實驗並顯示
其結果。

Complexity analysis is an important field in modern molecular biology. There are many tools and techniques to help us measure the overall structural property of sequences. In this thesis, we introduce a method to compute the sequence complexity. Previously works can be applying on DNA sequence and text sequence. Based on these achievements, we use the method to compute the complexity for time series. The way for complexity of time series is translating time series into two-symbol sequence or four-symbol sequence and computing the complexity. And, we also compare the complexity for different time series to see their relation. We analyze several experiments and show the result.

致謝 i
中文摘要 ii
Abstract iii
1 Introduction 1
2 Method 3
2.1 Main Method 3
2.2 Process of Complexity 6
3 Complexity for Time series 13
3.1 Translate time series to symbol sequence 13
3.2 Experiments 14
4 Conclusion 22
Bibliography 26

[1] Bai-Lin Hao, H.C. Lee, and Shu-Yu Zhang. Fractals related to long DNA sequences
and complete genomes. Chaos, Solitons & Fractals, 11(6):825–836, 2000.
[2] David Koslicki. Topological entropy of DNA sequences. Bioinformatics,
27(8):1061–1067, 2011.
[3] Cheng-Yuan Liou, Tai-HeiWu, and Chia-Ying Lee. Modeling complexity in musical
rhythm. Complexity, 15(4):19–30, 2010.
[4] Sukanya Manna and Cheng-Yuan Liou. Reverse engineering approach in molecular
evolution: Simulation and case study with enzyme proteins. In BIOCOMP, pages
529–533, 2006.
[5] C. K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons,
H. E. Stanley, et al. Long-range correlations in nucleotide sequences. Nature,
356(6365):168–170, 1992.
[6] Przemyslaw Prusinkiewicz. Score generation with l-systems. Proceedings of the
International Computer Music Conference, page 455–457, 1986.
[7] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of
plants. Springer, 1996.
[8] Peter Ti˜no. Spatial representation of symbolic sequences through iterative function
systems. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 29(4):386–393, 1999.
[9] Peter Worth and Susan Stepney. Growing music: Musical interpretations of lsystems.
Applications of Evolutionary Computing, 3449:545–550, 2005.
[10] Ren Zhang and Chun-Ting Zhang. Z curves, an intutive tool for visualizing and
analyzing the DNA sequences. Journal of Biomolecular Structure and Dynamics,
11(4):767–782, 1994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔