(3.238.96.184) 您好!臺灣時間:2021/05/08 21:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王珣沛
研究生(外文):Hsun-Pei Wang
論文名稱:智慧型手機之功能性照片自動集合系統
論文名稱(外文):SnapGroup: Supporting Grouping of Functional Photos Taken with Smartphones
指導教授:陳炳宇陳炳宇引用關係
指導教授(外文):Bing-Yu Chen
口試委員:梁容輝余能豪
口試日期:2013-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:49
中文關鍵詞:照片集合自動照片分類手機照片使用者導向設計
外文關鍵詞:Photo GroupingAutomatic Photo ClassificationSmartphone PhotosUser-Centered Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
因為智慧型手機輕便、易於隨身攜帶的特性,在任何時刻隨心所欲的拍攝照片成為可能,也因為智慧型手機輕便隨身的關係,智慧型手機拍攝的照片與傳統數位相機所拍攝的有不同的特性。然而,現有的照片管理工具仍以類似於個人電腦中的設計來協助使用者進行照片的管理,我們從使用者訪談中我們發現,使用者對於現有的設計感到挫折,且不同用途的照片混雜在一起。
從使用者調查中,我們發現智慧型手機的照片可以被歸納成三大類別:分別是功能性照片(Functional Photos)、事件類型照片(Event Photos)以及生活隨拍(Random Snapshots)。支援這三類型的照片的整理,可以更方便使用者根據照片的特性進行搜尋與整理。由於如何協助快速整理功能性照片尚未被先前研究充分探索,我們將重點放在功能性照片的自動分類。
我們從14位使用者收集到個人以手機拍攝的功能性及非功能性的照片,透過我們結合人臉、紋理及顏色特徵的方式,能夠使ROC曲線下面積達到(AUC)0.861,能夠有效的分類出功能性手機照片。

With the portable nature and compactness of smartphones, users nowadays are now able to take photos of any moments they like, thus bringing about different behaviors of photography practices than conventional digital cameras. Existing photo organizational tools on smartphones and related literature inherit similar design used in personal computers. However, in our formative user study, most users felt frustrated organizing their photos taken with smartphones, and photos taken for different purposes are mixed together by current design.
We discovered from the user study that photos taken with smartphones can be summarized into three different categories - functional photos, event photos, and random snapshots. Supporting grouping of the three types of photos easily enables users to search and organize them more easily. Since supporting grouping of functional photos has not been well-explored, we put focus on discussing classifying functional photos automatically in this research.
We collected both functional photos and non-functional ones from 14 participants. By using our methods combining the face model with texture and color features, it is able to achieve AUC about 0.861, an encouraging result considering the complex semantics of photos.

List of Figures iii
Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 RelatedWork 5
2.1 Studies on Camera Phone Usage . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Grouping of Photos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Photo Organizer on Mobile Devices . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 3 Formative User Study 9
3.1 Study on Understandings The Ways Users Organize Photos Taken with
Smartphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Study on Understandings User Behaviors Related to Functional Photos . . 16
3.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 4 System Design and Implementation 20
4.1 Separation of Event Photos . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Detecting Functional Photos . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 35
Chapter 5 Discussion 36
5.1 Supporting Grouping of Functional Photos, Event Photos, and Random
Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Context Sensitive Functional Photo Recommendation . . . . . . . . . . . . 38
5.3 Supporting Grouping of Different Types of Functional Photos . . . . . . . 38
Chapter 6 Limitations and FutureWork 40
Chapter 7 Conclusion 42
Bibliography 44

[1] Evernote. http://evernote.com/.
[2] Springpad. http://springpad.com/.
[3] Smartphones eat into low-end camera sales in us, study. http://www.bbc.co.uk/ news/technology-16318267, Dec. 2011.
[4] M. Abdel-mottaleb, S. Krishnamachari, and N. J. Mankovich. Performance evaluation of clustering algorithms for scalable image retrieval, pages 45–56. Wiley-IEEE Computer Society, 1998.
[5] M. Ames, D. Eckles, M. Naaman, M. Spasojevic, and N. House. Requirements for mobile photoware. Personal Ubiquitous Comput., 14(2):95–109, Feb. 2010.
[6] D. Borth, C. Schulze, A. Ulges, and T. M. Breuel. Navidgator - similarity based browsing for image and video databases. In Proc. KI ’08, pages 22–29, 2008.
[7] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
[8] S. Chatzichristofis and Y. Boutalis. Fcth: Fuzzy color and texture histogram - a low level feature for accurate image retrieval. In Image Analysis for Multimedia Interactive Services, 2008. WIAMIS ’08. Ninth International Workshop on, pages 191–196, 2008.
[9] S. A. Chatzichristofis and Y. S. Boutalis. Cedd: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In Proceedings of the 6th international conference on Computer vision systems, ICVS’08, pages 312–322, Berlin, Heidelberg, 2008.
Springer-Verlag.
[10] M. Cooper, J. Foote, A. Girgensohn, and L. Wilcox. Temporal event clustering for digital photo collections. ACM Trans. Multimedia Comput. Commun. Appl., 1(3):269–288, Aug. 2005.
[11] M. L. Cooper. Clustering geo-tagged photo collections using dynamic programming. In Proceedings of the 19th ACM international conference on Multimedia, MM ’11, pages 1025–1028, New York, NY, USA, 2011. ACM.
[12] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints. In InWorkshop on Statistical Learning in Computer Vision, ECCV, pages 1–22, 2004.
[13] J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A, 2(7):1160–1169, Jul 1985.
[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, June 2010.
[16] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, Aug. 1997.
[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.Witten. The weka data mining software: an update. SIGKDD Explor. Newsl., 11(1):10–18, Nov. 2009.
[18] S. Harada, M. Naaman, Y. J. Song, Q.Wang, and A. Paepcke. Lost in memories: interacting with photo collections on pdas. In Proceedings of the 4th ACM/IEEE-CS joint conference on Digital libraries, JCDL ’04, pages 325–333, New York, NY, USA, 2004. ACM.
[19] Q. Huo, Y. Ge, and Z.-D. Feng. High performance chinese ocr based on gabor features, discriminative feature extraction and model training. In Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International Conference on, volume 3,
pages 1517–1520 vol.3, 2001.
[20] A. Hwang, S. Ahern, S. King, M. Naaman, R. Nair, and J. Yang. Zurfer: mobile multimedia access in spatial, social and topical context. In Proceedings of the 15th international conference on Multimedia, MULTIMEDIA ’07, pages 557–560, New York, NY, USA, 2007.
ACM.
[21] M. Ito and D. Okabe. Camera phones changing the definition of picture-worthy. Japan Media Review, 29, 2003.
[22] A. Jaffe, M. Naaman, T. Tassa, and M. Davis. Generating summaries and visualization for large collections of geo-referenced photographs. In Proceedings of the 8th ACM international workshop on Multimedia information retrieval, MIR ’06, pages 89–98, New York,
NY, USA, 2006. ACM.
[23] T. Kindberg, M. Spasojevic, R. Fleck, and A. Sellen. The ubiquitous camera: An in-depth study of camera phone use. IEEE Pervasive Computing, 4(2):42–50, Apr. 2005.
[24] D. Kirk, A. Sellen, C. Rother, and K. Wood. Understanding photowork. In Proc. ACM CHI’06, pages 761–770, 2006.
[25] S. Krishnamachari and M. Abdel-Mottaleb. Image browsing using hierarchical clustering. In Proc. IEEE ISCC ’99, pages 301–307, 1999.
[26] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2169 – 2178, 2006.
[27] D. Lowe. Object recognition from local scale-invariant features. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, volume 2, pages 1150–1157 vol.2, 1999.
[28] M. Lux and S. A. Chatzichristofis. Lire: lucene image retrieval: an extensible java cbir library. In A. El-Saddik, S. Vuong, C. Griwodz, A. D. Bimbo, K. S. Candan, and A. Jaimes, editors, Proceedings of the 16th International Conference on Multimedia 2008, Vancouver,
British Columbia, Canada, October 26-31, 2008, pages 1085–1088. ACM, 2008.
[29] D. K. Park, Y. S. Jeon, and C. S. Won. Efficient use of local edge histogram descriptor. In Proceedings of the 2000 ACM workshops on Multimedia, MULTIMEDIA ’00, pages 51–54, New York, NY, USA, 2000. ACM.
[30] Z. Pecenovic, M. Do, M. Vetterli, and P. Pu. Integrated browsing and searching of large image collections. In Proc. VISUAL ’00, pages 279–289, 2000.
[31] H. Stelmaszewska, B. Fields, and A. Blandford. The roles of time, place, value and relation ships in collocated photo sharing with camera phones. In Proc. BCS-HCI ’08, volume 1, pages 141–150, 2008.
[32] N. Van House, M. Davis, M. Ames, M. Finn, and V. Viswanathan. The uses of personal networked digital imaging: an empirical study of cameraphone photos and sharing. In Proc. ACM CHI ’05 Ext. Abs., pages 1853–1856, 2005.
[33] N. A. Van House. Collocated photo sharing, story-telling, and the performance of self. IJHCS, 67(12):1073–1086, 2009.
[34] C. Vasantha Lakshmi, R. Jain, and C. Patvardhan. Ocr of printed telugu text with high recognition accuracies. In P. Kalra and S. Peleg, editors, Computer Vision, Graphics and Image Processing, volume 4338 of Lecture Notes in Computer Science, pages 786–795.
Springer Berlin Heidelberg, 2006.
[35] P. Viola and M. J. Jones. Robust real-time face detection. Int. J. Comput. Vision, 57(2):137–154, May 2004.
[36] A. Wilhelm, Y. Takhteyev, R. Sarvas, N. Van House, and M. Davis. Photo annotation on a camera phone. In CHI ’04 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’04, pages 1403–1406, New York, NY, USA, 2004. ACM.
[37] J. Xiao, N. Lyons, C. B. Atkins, Y. Gao, H. Chao, and X. Zhang. iphotobook: Creating photo books on mobile devices. In Proceedings of the International Conference on Multimedia, MM ’10, pages 1551–1554, New York, NY, USA, 2010. ACM.
[38] K. Zagoris, S. Chatzichristofis, N. Papamarkos, and Y. Boutalis. Automatic image annotation and retrieval using the joint composite descriptor. In Informatics (PCI), 2010 14th Panhellenic Conference on, pages 143–147, 2010.
[39] D. Zhang, M. M. Islam, and G. Lu. A review on automatic image annotation techniques. Pattern Recognition, 45(1):346 – 362, 2012.
[40] S. Zhang, J. Huang, Y. Huang, Y. Yu, H. Li, and D. Metaxas. Automatic image annotation using group sparsity. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3312 –3319, june 2010.
[41] X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classification using super-vector coding of local image descriptors. In K. Daniilidis, P. Maragos, and N. Paragios, editors, Computer Vision – ECCV 2010, volume 6315 of Lecture Notes in Computer Science, pages 141–154. Springer Berlin Heidelberg, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔