(3.238.96.184) 您好!臺灣時間:2021/05/08 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:巫文修
研究生(外文):Wen-Hsiu Wu
論文名稱:氮肥施用量對祕魯酸漿的生長、生理營養及多酚含量的影響研究
論文名稱(外文):Effects of Nitrogen Rates on the Growth, Physiology and Polyphenol Contents of Physalis peruviana
指導教授:黃良得黃良得引用關係
指導教授(外文):Lean-Teik Ng
口試委員:鍾仁賜洪傳揚林棟樑
口試委員(外文):Ren-Shih ChungChwan-Yang HongDoung-Liang Lin
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:125
中文關鍵詞:秘魯酸漿小果酸漿氮肥多酚化合物
外文關鍵詞:Physalis peruvianaCape gooseberrynitrogen fertilizerpolyphenolic compound
相關次數:
  • 被引用被引用:2
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
秘魯酸漿 (Physalis peruviana L.) 傳統上具有抗菌、利尿、止痛及治療哮喘等功效。近年研究顯示,秘魯酸漿地上部萃取物具有良好的抗氧化及抗發炎活性,此活性可能來自多酚類化合物。因秘魯酸漿的栽培資料仍相當缺乏,其原料來源與品質常受栽培條件及環境因子所影響。為生產高品質秘魯酸漿原料,故本研究目的為探討氮肥施用量對祕魯酸漿的生長、生理營養及多酚含量的影響。試驗採完全隨機設計,處理分別為不施肥 (Control, 0 kg N ha-1) 、尿素 (Chem, 180 kg N ha-1)、有機質肥料 (Org 1, 180 kg N ha-1)、兩倍有機質肥料 (Org 2, 360 kg-N ha-1) 及四倍有機質肥料 (Org 4, 720 kg N ha-1),共五種處理,每處理四重複。於幼苗移植盆栽後第90、120及150天分批採收地上部、根部植體與土壤進行分析。結果顯示,各階段採收之各處理株高與總酚含量均無顯著差異。與Control處理組比,施肥處理均可提高植株鮮重170-346%。地上部總類黃酮含量隨生長時間下降,根部則隨生長時間增加,其中根部Org 4處理組比Control處理組增加242%。Org 2與Org 4處理組之每株植體之氮肥吸收量均為2 g,顯示Org 2處理已達植株對氮肥的最大吸收量。在移植第150天後的Org 1處理出現最高地上部多酚化合物含量,其中caffeic acid、chlorogenic acid及ferulic acid的生成量分別為0.59、2.72及0.04 mg plant-1;根部則以Org 4處理為最高,其中chlorogenic acid、vanillic acid及epicatechin的生成量分別為2.36、2.08及0.16 mg plant-1。綜合結果顯示,Org 1處理對秘魯酸漿之植株的品質與產量改善為最佳,如提高植體鮮重約200%、株高16%及特定多酚類化合物含量35-90%,其中以chlorogenic acid含量為最高 (2.17 mg plant-1)。本次研究亦發現,Org 2及Org 4處理不益於地上部多酚化合物的生成,但可增加根部總類黃酮含量,試驗中說明Org 1處理為最適肥培條件。

Physalis peruviana is traditionally used for treating asthma, leukemia and other diseases. Recent studies have shown that the shoot extracts of P. peruviana possessed good antioxidant and anti-inflammatory activities; these activities are suggested to be contributed by polyphenolic compounds. Given the information on P. peruviana cultivation is very lacking, and the quality of its materials is affected by cultivation conditions and environmental factors, hence in order to produce high quality P. peruviana materials, this study aimed to investigate the effects of different nitrogen rates on the growth, physiological-nutrition and polyphenol contents of P. peruviana. The study was conducted under completely randomized design. There were five treatments comprising of no fertilizer (Control, 0 kg N ha-1), urea (Chem, 180 kg N ha-1), organic fertilizer (Org 1, 180 kg N ha-1), two times organic fertilizer (Org 2, 360 kg N ha-1) and four times organic fertilizer (Org 4, 720 kg N ha-1); each treatment was performed with four replications. The samples (shoots, roots and soil) were harvested and analyzed at 90, 120 and 150 day after transplanting. The results showed that the height and total phenolic content of treatments were not significantly different between periods of harvesting. Compared with the control, fertilizer treatments (Chem, Org 1, Org 2 and Org 4) led to an increase in shoot weight by 170-346%. The total flavonoid content in shoot was decreased between 90 to 150 days, but the total flavonoid content of root was increased. The total flavonoid content in the root of P. peruviana of Org 4 treatment was found to be higher than that of the Control by 242%. Each whole plant was able to uptake 2 g nitrogen in Org 2 and Org 4 treatment at 150 days, demonstrating that the plant has already absorbed the maximum nitrogen. The content of the highest three polyphenolic compounds was in the shoot of Org 1 treatment at 150 days, that were 0.59 mg plant-1 for caffeic acid, 2.72 mg plant-1 for chlorogenic acid and 0.04 mg plant-1 for ferulic acid. In the root, the content of the highest three polyphenolic compounds was in Org 4 treatment at 150 days, that were 2.36 mg plant-1 for chlorogenic acid, 2.08 mg plant-1 for vanillic acid and 0.16 mg plant-1 for epicatechin. Taken together, this study was shown that Org 1 treatment was the best in improving the quality and production of P. peruviana material; for example, the increase in fresh weight of plant by about 200% and height by 16%, as well as enhancing the selected polyphenolic compound content by 35 to 90%, in which the content of chlorogenic acid was the highest (2.17 mg plant-1). This study has also demonstrated that Org 2 and Org 4 treatments were not effective in increasing the synthesis of polyphenolic compounds in the shoot of P. peruviana, but is capable of increasing the total flavonoid content in its roots. Org 1 treatment was found to be the best cultivation condition for P. peruviana.

誌謝 I
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XI
附表目錄 XIII
第一章 前言 1
第二章 前人研究 3
一、 秘魯酸漿簡介 3
二、 秘魯酸漿栽培的相關資料 4
三、 秘魯酸漿化學成分之研究 4
四、 秘魯酸漿藥理活性之研究 5
第三章 材料與方法 6
材料
一、 試驗地點與時間 6
二、 土壤 6
三、 肥料 6
四、 試驗作物 6
方法
一、 試驗設計 6
二、 氣候 7
三、 採樣與樣品處理 7
四、 樣品分析 7
五、 統計分析 14
第四章 結果 26
一、 秘魯酸漿收穫後土壤基本性質 26
二、 秘魯酸漿生長、養分吸收 29
三、 總多酚及多酚類化合物含量分析 33
第五章 討論 77
一. 栽培後土壤基本性質 77
二. 秘魯酸漿的生長與營養狀態 79
三. 氮肥處理對秘魯酸漿的影響 82
第六章 結論 84
參考文獻 85
附表 95


徐雅芬。 2006。 全球植物藥產業概況及市場分析。 農業生技產業季刊,5:1-5。
彭瑞菊、王仕賢。 2002。 酸漿屬種間雜交之研究 ( I ) 不同成熟度雜交種胚培養。 台南區農業改良場研究彙報 39:42-48。
潘美蓉。 2005。 秘魯酸漿化學成分及其生物活性之研究。 高雄醫學大學藥物研究所 碩士論文,1-40頁。
行政院農委會。1997。維管束植物簡誌。卷肆:153頁。
Ali, A., M. Sahai, A.B. Ray and D.J. Slatkin. 1984. Physalolactone C, a new withanolide from Physalis peruviana. J. Nat. Prod. 47: 648-651.
Al Bedah, A.M., A.J. Cespedes Valcarcel, M. Amigoni, M.K.U. Aung, S. Behjat, I. Bianchi, A. Caizzi, C. Canila, V. Caprioglio, S.S. Chu, A. Chuthaputti, D. Dempsey, A. Discalzi, D. Giachetti, A.B. Hammad, H.F. Korbla Akakpo, L. Ilyenko, S. Karymbaeva, B.H. Koh, N. Dickson Lentosoane, E. Minelli, F. Ortega, C. Qunta, J.R. Randriasamimamana, D.S. Riley, E. Sangiorgi, L. Scrabbi, J. Sin, W. Situ, U. Solimene, P. Subcharoen, S. Sur, S. Tuite, R. Van Haselen and H.U. Yusufu. 2004. Guidelines on developing consumer information on proper use of traditional, Complementary and Alternative Medicine. World Health Organization, Italy. pp. 24-28.
Ali, L., B.W. Alsanius, A.K. Rosberg, B. Svensson, T. Nielsen and M.E. Olsson. 2012. Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. Eur. Food Res. Technol. 234: 33-44.
Allison, M., J. Fowler and E. Allen. 2001. Responses of potato (Solanum tuberosum) to potassium fertilizers. J. Agric. Sci. 136: 407-426.
Ahmad, S., A. Malik, R. Yasmin, N. Ullah, W. Gul, P.M. Khan, H.R. Nawaz and N. Afza. 1999. Withanolides from Physalis peruviana. Phytochemistry 50: 647-651.
Basey, K., B.A. McGaw and J.G. Woolley. 1992. Phygrine, an alkaloid from Physalis species. Phytochemistry 31: 4173-4176.
Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47: 151-163.
Baydar, N.G. and H. Baydar. 2013. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Ind. Crops Products. 41: 375-380.
Beaton, J.D. and L.M. Walsh 1973. Soil Testing and Plant Analysis, Soil Science Society of America, Inc. Madison, Wisconsin, USA. pp. 740-784.
Blacquiere, T., R. Hofstra and I. Stolen. 1987. Ammonium and nitrate nutrition in Plantago lanceolate and Plantago major. L. ssp. major. I. Aspects of growth, chemical composition and root respiration. Plant Soil 104: 129-141.
Brady, N.C. and R.R. Weil. 1996. The nature and properties of soils. Prentice-Hall Inc, Upper Saddle River, USA. pp. 364-653.
Bremer, B., K. Bremer, M. Chase, M. Fay, J. Reveal, D. Soltis, P. Soltis and P. Stevens. 2009. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105-121.
Bremner, J.M. 1965. Total nitrogen. I. Methods of soil analysis, Am. Soc. Agron. 2: 1149-1178.
Broaddus, G.M., J.E. York and J.M. Hoseley. 1965. Factors affecting the levels of nitrate nitrogen in cured tobacco leaves. Tob. Sci. 9: 149-157.
Chang, C.C., M.H. Yang, H.M. Wen and J.C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10: 178-182.
Chang, J.C., C.C. Lin, S.J. Wu, D.L. Lin, S.S. Wang, C.L. Miaw and L.T. Ng. 2008. Antioxidative and hepatoprotective effects of Physalis peruviana extract against acetaminophen-induced liver injury in rats. Pharm. Biol. 46: 724-731.
Chase, M.W., D.E. Soltis, R.G. Olmstead, D. Morgan, D.H. Les, B.D. Mishler, M.R. Duvall, R.A. Price, H.G. Hills and Y.L. Qiu. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Mo. Bot. Gard: 528-580.
Chaw, S.M., S.T. Chiu, J.A. Compton, D. Hou, C.F. Hsieh, T.H. Hsieh, S.F. Huang, T.C. Huang, M.T. Kao, H. Keng, C.F. Kuo, H.L. Li, J.C. Liao, L.K. Ling, Q. Lin, T.T. Lin, H.Y. Liu, T.S. Liu, F.Y. Lu, S.Y. Lu, H.N. Qin, J.J. Peng, N.K.B. Robson, B.L. Shih, C.H. Tsou, H.C. Wang, K.C. Yang, S.Z. Yang, T.Y. Yang, Y.P. Yang and S.S. Ying 1996. Flora of Taiwan, 2nd edition. Editorial Committee of the Flora of Taiwan, Taipei, Taiwan, ROC. 4: 559-581.
Davies, B.E. 1974. Loss on ignition as an estimate of soil organic matter1. Soil Sci. Soc. Am. J. 38: 150-151.
De Groot, C.C., L.F.M. Marcelis, R. Van den Boogaard and H. Lambers. 2004. Response of growth of tomato to phosphorus and nitrogen nutrition. Acta Hort. 633:357-364.
Dinan, L.N., S.D. Sarker and V. Šik. 1997. 28-hydroxywithanolide E from Physalis peruviana. Phytochemistry 44: 509-512.
Ehsanipour, A. Razmjoo and H. J. Zeinali. 2012. Effect of nitrogen rates on yield and quality of fennel (Foeniculum vulgare Mill.) accessions. Ind. Crop. Prod. 35: 121-125.
El-Gengaihi, S.E., E.E. Hassan, M.A. Hamed, H.G. Zahran and M.A. Mohammed. 2013. Chemical composition and biological evaluation of Physalis peruviana root as hepato-renal protective agent. J. Diet. Suppl. 10: 39-53.
El-Tohamy, W., H. El-Abagy, S. Abou-Hussein and N. Gruda. 2009a. Response of Cape gooseberry (Physalis peruviana L.) to nitrogen application under sandy soil conditions. Gesunde Pflanzen 61: 123-127.
El-Tohamy, W., A. Ghoname, G. Riad and S. Abou-Hussein. 2009b. The influence of slow release fertilizer on bean plants (Phaseolus vulgaris L.) grown in sandy soils. Australian Journal of Basic An. 3: 966-969.
Fang, S.T., J.K. Liu and B. Li. 2012. Ten new withanolides from Physalis peruviana. Steroids 77: 36-44.
Fox, R.L. and E. Kamprath. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci. Soc. Am. J. 34: 902-907.
Garzon-Martinez, G.A., Z.I. Zhu, D. Landsman, L.S. Barrero and L. Marino-Ramirez. 2012. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC Genomics 13:151.
Gutser, R., T. Ebertseder, A. Weber, M. Schraml and U. Schmidhalter. 2005. Short‐term and residual availability of nitrogen after long‐term application of organic fertilizers on arable land. J. Plant Nutr. Soil Sci. 168: 439-446.
Haynes, R. and R. Naidu. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosys. 51: 123-137.
Hochmuth, G., R. Hochmuth, M. Donley and E. Hanlon. 1993. Eggplant yield in response to potassium fertilization on sandy soil. HortScience 28: 1002-1005.
Hornok, L. 1992a. General aspects of medical plants. In Cultivation and processing of medicinal plants. John Wiley & Sons Ltd, UK. (ed.), pp. 3-9.
Hornok, L. 1992b. Cultivation and processing of medical plants. John wiley & Sons, New York, USA. pp. 80-82.
Johnson, C.D. and D.R. Decoteau. 1996. Nitrogen and potassium fertility affects jalapeno pepper plant growth, pod yield, and pungency. HortScience 31: 1119-1123.
Karlen, D., M. Mausbach, J. Doran, R. Cline, R. Harris and G. Schuman. 1997. Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 61: 4-10.
Keeney, D.R. and D.W. Nelson. 1982. Modified griess-ilosvay method. Academic Press, New York, USA. pp. 684-687.
Klinac, D. 1986. Cape gooseberry (Physalis peruviana) production systems. New Zeal. J. Exp. Agr. 14: 425-430.
Klinenberg, J.R., S.E. Goldfinger and J.E. Seegmiller. 1965. The effectiveness of the xanthine oxidase inhibitor allopurinol in the treatment of gout. Ann. Intern. Med. 62: 639-647.
Kozłowska, H. and H. Zielinski. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 48: 2008 - 2016.
Kujala, T.S., J.M. Loponen, K.D. Klika and K. Pihlaja. 2000. Phenolics and betacyanins in red beetroot (Beta vulgaris) Root: Distribution and Effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 48: 5338 - 5342
Liptay, A. and S. Nicholls. 1993. Nitrogen supply during greenhouse transplant production affects subsequent tomato root growth in the field. J. Am. Soc. Hort. Sci. 118: 339-342.
Lu, G.L., L. Tang, Y.O. Chu, W.L. Zhou, H.P. Su, Z.H. Liu and Z. Yi. 2008. Effect of nitrogen levels on the changes of phenol and flavonoid contents under rice monocropping and intercropping system. Acta Metall. Sin. 14: 1064-1069.
Mader, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296: 1694-1697.
Magalhaes, H.I.F., M.R. Torres, L.V. Costa‐Lotufo, M.O. Moraes, C. Pessoa, M.L. Veras, O.D.L. Pessoa, E.R. Silveira and A.P.N.N. Alves. 2006. In‐vitro and in‐vivo antitumour activity of physalins B and D from Physalis angulata. J. Pharm. Pharmacol. 58: 235-241.
Mayorga, H., H. Knapp, P. Winterhalter and C. Duque. 2001. Glycosidically bound falvor compounds of cape gooseberry. J. Agric. Food Chem. 49: 1904-1908.
McLean, E.O. 1982. Soil pH and lime requirement. American Society of Agronomy : Soil Science Society of America, pp. 17-44.
McCain, R. 1993. Goldenberry, passionfruit and white sapote:potential fruits for cool subtropical areas. In: Janick, J., Simon, J.E. (Eds.), New Crops. Wiley, New York. pp. 479-486.
Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409-1416.
Melton, R.R. and R.J. Dufault. 1991. Nitrogen, phosphorus, and potassium fertility regimes affect tomato transplant growth. HortScience 26: 141-142.
Mittelstras, K., D. Treutter, M. Plesl, W. Heller, E. Elstner and I. Heiser. 2006. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani. Plant Biol. 8: 653-661.
Morton, J. 1987. Cape Gooseberry. In: Fruits of warm climates. Julia F. Morton, Miami, FL, USA. pp. 430–434.
Neogi, P., M. Sahai and A.B. Ray. 1986. Withaperuvins F and G, two withanolides of Physalis peruviana roots. Phytochemistry 26: 243-247.
Perez-Castorena, A.L., M. Luna, M. Martinez and E. Maldonado. 2012. New sucrose esters from the fruits of Physalis solanaceus. Carbohydr. Res. 352: 211-214.
Pokorny, J. 1991. Natural antioxidants for food use. Trends Food Sci. Technol. 2: 223-227.
Puente, L.A., C.A. Pinto-Munoz, E.S. Castro and M. Cortes. 2011. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res. Int. 44: 1733-1740.
Qafoku, N.P., M.E. Sumner and D.E. Radcliffe. 2000. Anion transport in columns of variable charge subsoils: Nitrate and chloride. J. Environ. Qual. 29: 484-493.
Qin, W.L. and C.J. Li. 2007. Effects of increasing potassium fertilizer dosage on the quality and yield of tomato in greenhouse. China Soils Fert. 2007: 44-47.
Ramadan, M.F. 2011. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 44: 1830-1836.
Ramadan, M.F. and J.T. Moersel. 2003. Oil goldenberry (Physalis peruviana L.). J. Agric. Food Chem. 51: 969-974
Ramadan, M.F. and J.T. Moersel. 2007. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. J. Sci. Food Agric. 87: 452-460.
Ramos-Lara, C., G. Alcantar-Gonzalez, A. Galvis-Spinola, A. Pena-Lomeli and A. Martinez-Garza. 2002. Nitrogen use efficiency in husk tomato under fertigation. Terra 20: 465-469.
Rehm, S. and G. Espig., 1991. The cultivated plants of the topics and subtropics, cultivation, economic value, utilization. Fruit. In R. Sigmund, & E. Gustav (Eds.). Verlag Josef Margraf, Weikersheim, Germany. pp. 169−245.
Rhoades, J.D. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin, USA. pp. 595-610.
Ryther, J.H. and W.M. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171: 1008-1013.
Sakurai, K., H. Ishii, S. Kobayashi and T. Iwao. 1976. Isolation of 4β-Hydroxywithanolide E, a New Withanolide from Physalis peruviana L. Chem. Pharm. Bull. 24: 1403-1405
Shand, C.A., B.L. Williams and G. Coutts. 2008. Determination of N-species in soil extracts using microplate techniques. Talanta 74: 648-654.
Sharma V., S. Sharma and R. Paliwal. 2011. Withania somnifera a rejuvenating ayrvedic medicinal herb for the treatment of various human ailments. Int. J. Pharm. Tech. Res. 3:187–192.
Sibanda, H. and S. Young. 1986. Competitive adsorption of humus acids and phosphate on goethite, gibbsite and two tropical soils. J. Soil Sci. 37: 197-204.
Sun, P., N. Mantri, H. Lou, Y. Hu, D. Sun, Y. Zhu, T. Dong and H. Lu. 2012. Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (Fragaria× ananassa Duch.) at two levels of nitrogen application. PLoS ONE 7: e41000..
Tangkanakul, P., P. Auttaviboonkul, B. Niyomwit, N. Lowvitoon, P. Charoenthamawat and G. Trakoontivakorn. 2009. Antioxidant capacity, total phenolic content and nutritional composition of Asian foods after thermal processing. Int. Food Res. J. 16: 571-580
Tapia, M.E. and A.M. Fries. 2007. Guia de campo de los cultivos andinos. Lima: FAO y ANPE. pp. 103-121.
Tubb, R.S. 1974. Glutamine synthetase and ammonium regulation of nitrogenase synthesis in Klebsiella. Nature 251: 481-485.
Tuomi, J., P. Niemela and S. Siren. 1990. The panglossian paradigm and delayed inducible accumulation of foliar phenolics in mountain birch. Oikos 59: 399-410.
Vanella, L., I. Barbagallo, R. Acquaviva, C. Di Giacomo, V. Cardile, N. Abraham and V. Sorrenti. 2012. Ellagic acid: cytodifferentiation and antiproliferative effects in human prostatic cancer cell lines. Curr. Pharm. Des. 19: 2728-2736.
Vollenweider, R.A. 1971. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Organisation for Economic Co-operation and Development, Paris. pp. 78-91.
Wang, N., Z.Y. Wang, S.L. Mo, T.Y. Loo, D.M. Wang, H.B. Luo, D.P. Yang, Y.L. Chen, J.G. Shen and J.P. Chen. 2012. Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res. Treat. 134: 943-955.
Wanyama, D., L. Wamocha, K. Ngamau and R. Ssonkko. 2006. Effect of gibberrellic acid on growth and fruit yield of greenhouse-grown cape gooseberry. Afr. Crop Sci. J. 14: 319-323.
Winsor, G., Adams, P., 1987. Diagnosis of mineral disorders in plants. In: Robinson, J.B.D. (Ed.), Glasshouse Crops, Vol. 3. Crown, London. pp. 166.
Woolley, J.G. and P.J. Beresford. 1974. Biosynthesis of tigloidine in Physalis peruviana L. Phytochemistry 13: 2143 - 2144.
Wu, S.J., L.T. Ng, Y.M. Hung, D.L. Lin, S.S. Wang, S.N. Hung and C.C. Lin. 2005. Antioxidant activities of Physalis peruviana. Biol. Pharm. Bull 28: 963-966.
Wu, S.J., L.T. Ng, C.H. Chen, D.L. Lin, S.S. Wang and C.C. Lin. 2004a. Antihepatoma activity of Physalis angulata and P. peruviana extracts and their effects on apoptosis in human Hep G2 cells. Life Sci 74: 2061-2073.
Wu, S.J., L.T. Ng, D.L. Lin, S.N. Huang, S.S. Wang and C.C. Lin. 2004b. Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and the mitochondrial signaling transduction pathway. Cancer Lett. 215: 199-208.
Yen, C.Y., C.C. Chiu, F.R. Chang, J.Y. Chen, C.C. Hwang, Y.C. Hseu, H.L. Yang, A.Y. Lee, M.T. Tsai, Z.L. Guo, Y.S. Cheng, Y.C. Liu, Y.H. Lan, Y.C. Chang, Y.C. Ko, H.W. Chang and Y.C. Wu. 2010. 4beta-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest. BMC Cancer 10: 46-53
Zhu, W., X. Lin, C. Jin, Y. Zhang and P. Fang. 2009. Effects of nitrogen application rates on antioxidant contents and antioxidative activities in Chinese cabbage (Brassica chinensis L.). J. Zhejiang Univ. (Agric. Life Sci.) 35: 299-306.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔