(3.238.130.97) 您好!臺灣時間:2021/05/18 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林綉霞
研究生(外文):Sao-Ha Lam
論文名稱:利用微生物轉化生產水溶性大豆異黃酮條件之探討
論文名稱(外文):Studies on the Processes for Producing Water Soluble Soy Isoflavones by Bioconversion
指導教授:蘇南維蘇南維引用關係
指導教授(外文):Nan-Wei Su
口試委員:李敏雄鍾玉明陳錦樹古國隆
口試委員(外文):Min-Hsiung LeeYouk-Meng ChoongChin-Shuh ChenKuo-Lung Ku
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:72
中文關鍵詞:大豆異黃酮生物轉化daidzein-7-O-phosphategenistein-7-O-phosphate
外文關鍵詞:Soy isoflavoneBiotransformationsdaidzein 7-O-phosphategenistein 7-O-phosphate
相關次數:
  • 被引用被引用:4
  • 點閱點閱:653
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來大豆異黃酮(isoflavone)被研究發現具有改善女性更年期症狀、預防心血管疾病、預防骨質疏鬆症及癌症等功效,而其中以無配醣基之異黃酮(aglycones)效果最佳,但由於aglycones的水溶性不佳,導致生物可利用率(bioavailability)差。根據本研究室先前發現利用Bacillus subtilis FC-10能把大豆異黃酮中的aglycones轉化成水溶性佳之daidzein-7-O-phosphate (D7-P)和genistein-7-O-phosphate (G7-P),因此推測能夠有效改善其生物可利用率。
  本研究探討生產水溶性大豆異黃酮之生物轉換條件及產物回收之程序。分為三個部分進行,第一部分以B. subtilis FC-10分別利用daidzein及genistein進行生物轉換,所得培養液中的D7-P與G7-P再經過一連串的分離、純化步驟製備純化的D7-P及G7-P作為定量用之標準品。第二部分探討B. subtilis FC-10在培養之不同時間點加入基質與不同基質濃度之生物轉化效率。第三部分探討利用黃豆作為轉化基質之可行性。結果顯示,基質在B. subtilis FC-10的適應期間(lag phase)添加至培養液中培養,相較於在對數期(log phase)及靜止期(stationary phase)加入基質之轉化效率較佳,其轉化率可達約94%。此外,經生物轉換後之培養液利用乙酸乙酯萃取、濃縮、正己烷沉澱及HP-20大孔樹脂之分離純化步驟後,D7-P和G7-P在產物中的純度能夠從原來的2.76%提升至83.1%且回收率為97.3%。利用濕式滅菌加熱方式能有效把黃豆中之malonyl-glucosidic isoflavones轉變成β-glucosides及aglycones。比較不同處理的黃豆做為生物轉換基質的結果顯示,未經濕熱處理的黃豆基質生物轉換效率較差,為37.0%,經濕熱處理後的黃豆基質生物轉換效率較佳,為85.6%。

Soy isoflavones are the components responsible for estrogenic responses observed in vitro and in experimental animals. The beneficial effects of isoflavones include: the reduction of serum lipids, increase of bone mineral density, relief of menopausal symptoms, and chemoprevention of mammary and prostate cancer. A number of studies have revealed that the biological effects of isoflavones mainly attributed to their aglyconic forms rather than the glycosidic forms. However, many studies reported that aglycones show low bioavailability to humans because of their poor water-solubility.
In the previous work of our lab, a Bacillus subtilis strain designated as Bacillus subtilis FC-10 showed the capability on the biotransformation of daidzein and genistein into daidzein-7-O-phosphate and genistein-7-O-phosphate. The objective of this thesis is develop a procedure for recovering D7-P and G7-P from the culture broth of biotransformation, including exploring some factors on biotransformations for recovering D7-P and G7-P. Moreover, we investigate the feasibility of using soybean powder as the substrate for the transformation to produce D7-P and G7-P. The results indicated that B. subtilis FC-10 was inoculated into the initial culture medium containing the biotransformation substrate isoflavone showed the highest bioconversion rates were 95.7% for D7-P and 94.4% for G7-P. EtOAc is an efficient solvent for the extraction of D7-P and G7-P from culture broth. The purity and the recovery of the products through this operation by the extraction of 1.2 fold EtoAc for 4 times were 37.9% and 97.5%, respectively. Furthermore, the products containing D7-P and G7-P were purified by adding various ratios of n-hexane to EtOAc extract and the products were recovered from the precipitation. The purity and the recovery of D7-P and G7-P in the precipitate of 88.9% n-hexane were 47.6% and 97.2%, respectively. Then the precipitate was dissolved with little amount of deionized water and was passed through HP-20 resin column. The fraction containing the most D7-P and G7-P was collected from 15% and 30% MeOH eluates of the HP-20 resin adsorpted fraction. The purity and recovery of products containing D7-P and G7-P were 83.1% and 94.6%, respectively. Moreover, soybean powder was a feasible for D7-P and G7-P production. However, pretreatment processes of soybean substrate would seriously affected the conversion rate of D7-P and G7-P. Autoclaved treatment with 85.6% conversion rate seemed to be a better choice where as the conversion rate for soybean was only 37.0%.


中文摘要 i
目錄 I
圖目錄 IV
表目錄 VI
縮寫表 VII
第一章 前言 1
第二章 文獻整理 2
第一節、黃豆 2
第二節、植物性化學物質 3
2-1 植物性雌激素 3
2-2 類黃酮 3
第三節、大豆異黃酮 5
3-1 異黃酮之生理活性 5
3-2 大豆異黃酮之吸收與代謝 10
第四節、前驅藥物 15
第五節、生物分離與純化 15
5-1 生物分離工程之應用 15
5-2 萃取分離 16
5-3 吸附作用 17
5-4 大孔網狀聚合物吸附劑 18
5-5 離子交換 18
第六節、黃豆發酵食品 22
6-1 納豆 22
6-2 納豆激酶 23
第三章 材料與方法 25
第一節、實驗大綱 25
第二節、實驗材料 25
2-1 菌株 25
2-2 黃豆 25
2-4 試藥與溶劑 26
2-4 培養基 26
第三節、實驗儀器 29
第四節、分析方法 30
4-1 高效液相層析法之異黃酮分析條件 30
4-2 大豆異黃酮含量計算方式 30
4-3 半製備級高效液相層析儀之D7-P與G7-P之分析條件 31
第五節、實驗方法 32
5-1 利用陰離子交換樹脂分離培養液中之D7-P與G7-P 32
5-2 D7-P與G7-P標準品之製備 32
5-3 B. subtilis FC-10種菌之生長曲線 34
5-4 生產D7-P與G7-P條件之探討 34
5-5 分離與純化培養液中D7-P與G7-P 35
5-6 不同加熱條件對於黃豆中異黃酮之型態的影響 35
5-7 利用黃豆粉作為生物轉化基質之探討 36
5-8 納豆之製備(固態發酵) 36
5-9 統計分析 37
第四章 結果與討論 38
第一節、利用陰離子交換樹脂分離培養液中D7-P與G7-P 38
第二節、探討B. subtilis FC-10生物轉化之條件 41
第三節、回收及純化D7-P及G7-P 47
第四節、探討利用黃豆作為轉化基質之可行性 58
1. 分析不同台灣品種黃豆之大豆異黃酮含量 58
2. 不同加熱條件處理對大豆異黃酮之形態之改變 58
3. 以黃豆粉作為B. subtilis FC-10生物轉化基質(液態培養) 59
4. 利用B. subtilis FC-10與黃豆進行生物轉化(固態培養) 59
5. 儲藏安定性實驗 60
第五章 結論 68
第六章 參考文獻 69


李淑芬。1997年。鹼性發酵食品。食品工業月刊。29:17-25
何幸容。2008年。納豆菌發酵豆奶的開發及其品質評估。國立中興大學食品暨應用生物科技學系碩士論文。
何曉雯。2012年。納豆菌對大豆異黃酮轉化之研究。國立台灣大學農業化學系研究所碩士論文。
周澤川。2008年。利用分子模版之技術自中國傳統藥材提煉異黃酮素之防癌藥劑。中醫藥學年報。26(1):125-160
連大進。1995年。台灣黑豆利用與生產展望。農業世界 147:39-42。
許元勲。2005年。納豆菌發酵製品介紹及國內研發現況。農業生技產業季刊。3: 45-52。
蔡文福。1994年。大豆。雜糧作物各論。
常致綱。2006年。大豆異黃酮定量方法之改良及加工方式對大豆異黃酮種類轉換之研究。國立台灣大學農業化學系研究所碩士論文。
鄭光成。2005年。利用根黴菌之深部培養法開發機能性醱酵黑豆食品之研究。國立台灣大學微生物與生化學研究所碩士論文。
新編中藥大辭典。1982年。第三冊。新文豐出版社,台南市。
Adlercreutz H, Bannwart C, Wahala K, Makela T, Brunow G, Hase T, Arosemena PJ, Kellis JT, Jr., Vickery LE (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. The Journal of steroid biochemistry and molecular biology 44: 147-153
Adlercreutz H, Hockerstedt K, Bannwart C, Bloigu S, Hamalainen E, Fotsis T, Ollus A (1987) Effect of dietary-components, including lignans and phytoestrogens, on enterohepatic circulation and liver-metabolism of estrogens and on sex-hormone bnding globulin (Shbg). The Journal of steroid biochemistry and molecular biology 27: 1135-1144
Adlercreutz H, Honjo H, Higashi A, Fotsis T, Hamalainen E, Hasegawa T, Okada H (1991) Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. The American journal of clinical nutrition 54: 1093-1100
Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. The Journal of biological chemistry 262: 5592-5595
Albert A (1958) Chemical Aspects of Selective Toxicity. Nature 182: 421-423
Barnes S (1995) Effect of genistein on in vitro and in vivo models of cancer. The Journal of nutrition 125: 777-783
Cannell RJP (1999) Natural Products Isolation. Methods in Biotechnology
Chen Hsu, H-WH, Chi-Fon Chang, Shang-Ta Wang, Ting-Fang Fang, Min-Hsiung Lee, Nan-Wei Su (2013) Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Research International
Chiou TY, Lin YH, Su NW, Lee MH (2010) beta-Glucosidase isolated from soybean okara shows specificity toward glucosyl isoflavones. Journal of agricultural and food chemistry 58: 8872-8878
Cowan MM (1999) Plant Products as Antimicrobial Agents. Clinical Microbiology Reviews 12: 564-577
Dakora FD, Phillips DA (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant 49: 1-20
Deak G MG, Lang I, Nekam K, Gonzalez-Cabello R, Gergely P, Feher J. (1990) Effects of two bioflavonoids on certain cellular immune reactions in vitro. Acta Physiol. 76: 113-121.
Dixon RA (2004) Phytoestrogens. Annual review of plant biology 55: 225-261
Dixon RA, Ferreira D (2002) Genistein. Phytochemistry 60: 205-211
Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochemical and biophysical research communications 197: 1340-1347
GARNER A (1997) The effects of phytoestrogens on bone. Nutrition Research 17: 1617-1632
H. Esaki HOaTO (1994) Antioxidative activity of fermented soybean products. Food Phytochemicals for Cancer Prevention 546: 353-360
Hong H, Landauer MR, Foriska MA, Ledney GD (2006) Antibacterial activity of the soy isoflavone genistein. Journal of basic microbiology 46: 329-335
Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of nutrition 130: 1695-1699
JI Xun WJ, Zhang Lei, Zhao Lin-xiang, Jiang Hua-liang, Liu Hong (2013) Application of phosphates and phosphonates prodrugs in drug research and development. Acta Pharmaceutica Sinica 48: 621-634
Kishida T, Ataki H, Takebe M, Ebihara K (2000) Soybean meal fermented by Aspergillus awamori increases the cytochrome P-450 content of the liver microsomes of mice. Journal of agricultural and food chemistry 48: 1367-1372
Kuo A, Cappelluti S, Cervantes-Cervantes M, Rodriguez M, Bush DS (1996) Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. The Plant cell 8: 259-269
Murphy H-jWaPA (1994) Isoflavone Content in Commercial Soybean Foods. Journal of agricultural and food chemistry 42: 1666-1673
Nagata C, Takatsuka N, Kawakami N, Shimizu H (2001) Soy product intake and hot flashes in Japanese women: results from a community-based prospective study. American journal of epidemiology 153: 790-793
Naim M, Gestetner B, Zilkah S, Birk Y, Bondi A (1974) Soybean isoflavones. Characterization, determination, and antifungal activity. Journal of agricultural and food chemistry 22: 806-810
Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y (1988) Effect of genistein on topoisomerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells. Biochemical and biophysical research communications 157: 183-189
Ososki AL, Kennelly EJ (2003) Phytoestrogens: a review of the present state of research. Phytotherapy research : PTR 17: 845-869
Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual review of nutrition 22: 19-34
Rostagno MA, Palma M, Barroso CG (2007) Microwave assisted extraction of soy isoflavones. Analytica chimica acta 588: 274-282
Sesso HD, Liu S, Gaziano JM, Buring JE (2003) Dietary lycopene, tomato-based food products and cardiovascular disease in women. The Journal of nutrition 133: 2336-2341
Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. The Journal of nutrition 129: 758S-767S
Somekawa Y, Chiguchi M, Ishibashi T, Aso T (2001) Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstetrics and gynecology 97: 109-115
Steinkraus KH (1995) Indigenous fermented food innvolving an alkaline fermentation. In: Steinkraus,K.H.(Ed.). Handbook of Indigenous Fermented Foods 349-362
Sumi H, Hamada H, Nakanishi K, Hiratani H (1990) Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta haematologica 84: 139-143
Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111
Waldmann S, Almukainzi M, Bou-Chacra NA, Amidon GL, Lee BJ, Feng JF, Kanfer I, Zuo JZ, Wei H, Bolger MB, Lobenberg R (2012) Provisional Biopharmaceutical classification of some common herbs used in western medicine. Mol Pharmaceut 9: 815-822
Wang HJ, Murphy PA (1996) Mass balance study of isoflavones during soybean processing. Journal of agricultural and food chemistry 44: 2377-2383
Wolfgang Barz RW (1992) Biosynthesis and metabolism of isoflavones and pterocarpan phytoalexins in chickpea, soybean and phytopathogenic fungi. Recent advances in phytochemistry 26: 139-164
Xu X, Wang HJ, Murphy PA, Hendrich S (2000) Neither background diet nor type of soy food affects short-term isoflavone bioavailability in women. The Journal of nutrition 130: 798-801
Yang Z, Kulkarni K, Zhu W, Hu M (2012) Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anti-cancer agents in medicinal chemistry 12: 1264-1280



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top