(3.236.222.124) 您好!臺灣時間:2021/05/08 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁嘉臨
研究生(外文):Chia-Lin Weng
論文名稱:以豬糞尿水為基質之微生物燃料電池的電源管理
論文名稱(外文):The Power Management of Microbial Fuel Cells Using Swine Wastewater as Substrate
指導教授:周楚洋
口試委員:陳力騏李允中
口試日期:2013-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:63
中文關鍵詞:微生物燃料電池固定化技術豬糞尿水儲電系統
外文關鍵詞:Microbial fuel cellImmobilized cellsSwine wastewaterElectricity storge system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:633
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用空氣陰極式反應槽,槽體體積為1 L,經固定化菌種填充後有效體積為0.6 L。本研究以三段式豬糞尿水處理系統之驗氧汙泥為菌種,使用固定化技術使菌種包埋於顆粒,百分之百填充於一升空氣陰極式反應槽內,使用碳布做為陽極,白金鈦網為陰極,進流基質為兩種不同基質(人工廢水、豬糞尿水),兩種基質各在兩種不同有機負荷10 g/L、6 g/L,觀察其對為生物燃料電池產電效能之影響。
實驗結果顯示人工廢水酸化速度快,其陽極槽體厭氧發酵停留酸化的階段,而人工廢水的產電效果較豬糞尿水好,估計陽極槽內部酸鹼值呈酸性時,產電菌作用的較好。單一MFC人工廢水10 g/L、人工廢水6 g/L、豬糞尿水加人工廢水10 g/L、豬糞尿水6 g/L的平均電壓值分別為0.83、0.74、0.76、0.75V,電流值最高分別為0.85、0.71、0.43、0.35 mA,可看出高有基負荷的產電效能較為出色,但人工廢水試驗時,較低的有機負荷基質進流實驗CE較高,顯示提高有機負荷雖能提高產電效能,但有機物質的利用和產電效能並非等比例的提高。
本實驗利用兩個MFC串聯或並聯成MFC系統,提高單一一個MFC所能提供的電能,並將其經過Charge pump後的電能儲存至超級電容(3.3 F、10 F)觀察其充電曲線、充電效能,將超級電容充電至1 V後利用升壓轉換器升壓至3.3 V以啟動後端負載(5 mm的紅色LED燈),結果現示超級電容儲電雖會因電容容量的增大而下降但能儲存較多的電能,3.3 F的超極電容儲存至1 V時能使得一顆5mm廣角形紅光LED燈亮約8秒,而10 F 的超級電容儲存至1 V時能使其亮約32秒。


Air-cathode MFC was utilized for this study, the reactor volume is 600 mL. In this study, the performance of microbial fuel cells (MFCs) was investigated by two kind of substrates, artificial wastewater and swine wastewater, and both of them have two different loading rate (10 g/L,6 g/L).In this study, MFCs using carbon cloth as the anode and platinum titanium net as the cathode, the anaerobic sludge of a three-stage swine wastewater treatment system was used as the seeding bacteria and immobilized cells were packed into reactors 100%.
Experimental results show that the speed of acidification in artificial wastewater is very fast, the anode anaerobic fermentation tank stays acidification stage, and artificial wastewater electricity production was better than swine wastewater so it is estimated that electricity production is better when the reactor’s pH is acid. Single MFC artificial wastewater 10 g/L, artificial wastewater 6 g/L, swine waste water plus artificial wastewater 10 g/L and swine wastewater 6 g/L, the average voltage values were 0.83, 0.74, 0.76 and 0.75 V, average maximum current values were 0.85, 0.71 ,0.43 and 0.35 mA, respectively. Electricity production was increasing when loading rate increased, however, its average coulombic efficiency was not occurred at the loading rate of 10 g/L. These results showed that the performance of MFCs would be increased by feeding high loading rate substrate but electricity production efficiency is not proportional increase.
Two air-cathode MFCs were connected in series or parallel as a MFC’s system to increase the output voltage or output current. MFC’s system storage power to super capacitor (3.3 F, 10 F) through charge pump then use the boost converter to boost the output voltage to 3.3 V then activating the load(5 mm red LED lights). The experimental results showed that it could sustain lightening a red LED for around 8 seconds when voltage was charged to 1V for a 3.3F super capacity and sustain lightening a red LED for around 32 seconds when voltage was charged to 1 V for a 10 F super capacity.


誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 前言與研究目的 1
1-1前言 1
1-2 研究目的 2
第二章 文獻探討 3
2-1 微生物燃料電池的基本原理及反應機制 3
2-2 微生物燃料電池效能影響因素 5
2-2-1 操作條件 5
2-2-2 電化學能的損失 6
2-3-3 電化學參數 7
2-3 微生物燃料電池的反應槽類型 8
2-3-1 傳統典型的雙槽式MFC 8
2-3-2 單槽式空氣陰極微生物燃料電池(Air-cathode MFC) 9
2-4微生物燃料電池的應用 10
2-5 固定化細胞技術 12
2-6 微生物燃料電池儲電系統 14
2-6-1儲能系統 14
2-6-2 直流轉直流轉換器(DC to DC Converter) 16
第三章 研究方法 18
3-1 實驗材料 18
3-1-1 菌種 18
3-1-2 基質 19
3-1-3 固定化細胞製做 20
3-1-4 Air-Cathode MFC反應槽結構 22
3-2 儲電系統 24
3-2-1 儲電材料及系統 24
3-3 實驗設計 27
3-4 分析方法 29
第四章 結果與討論 31
4-1 人工廢水及豬糞尿水產電效能試驗 31
4-1-1 開路電壓 31
4-1-2 短路電流 34
4-1-3 電流密度 37
4-1-4 庫倫效率 39
4-2 廢水處理 42
4-2-1 pH 42
4-2-2 COD 46
4-2-3 COD去除率 48
4-3 充電效率 50
4-4 放電測試 54
4-5與其他研究比較 55
第五章結論與建議 57
參考文獻 59


行政院農業委員會。2012。101年9月底養豬頭數調查報告。網址: http://www.coa.gov.tw/show_index.php。
吳亞謙。2011。添加石墨粉對固定化微生物燃料電池產電效能之影響。碩士論文。台北:台灣大學生物產業機電工程研究所。
陳國誠。2000。生物固定化技術與產業應用。初版,33-36,417-423。台北:茂昌。
黃郁雯。2012。微生物燃料電池與儲電系統效能之探討。碩士論文。台北:台灣大學生物產業機電工程系研究所。
羅一中。2010。接種量及進料pH對固定化微生物燃料電池效能之影響。碩士論文。台北:台灣大學生物產業機電工程系研究所。
Aelterman, P., K. Rabaey, T. H. Pham, N. Boon and W. Verstraete. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40: 3388-3394.
Angenent, L. T. and B. A. Wrenn. 2008. Optimizing mixed-culture bioprocessing to convert wastes into bioenergy. In “Bioenergy”, ed. Wall, J. D., C. S. Harwood, and A. Demain, 179–194.USA: ASM Press.
Cassidy, MB., H. Lee and J.T. Trevors. 1996. Environmental applications of immobilized microbial cells: a review. Journal of Industrial Microbialogy. 16,79-101.
Cheng, S., H. Liu and B.E. Logan. 2006. Power densities using different cathode catalyst (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 40: 364–9.
Cheng, S. and B. E. Logan. 2011. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresource Technology. 102: 4468–4473.
Dewan, A., H. Beyenal and Z. Lewandowski. 2008. Scaling up microbial fuel cell. Environ. Sci. Technol. 42: 7643-7648.
Dewan, A., C. Donvan, D. Heo and H. Beyenal. 2010. Evaluating the performance of microbial fuel cells powering electronic devices. J. Power Sources. 195: 90–96
Donovan, C., A. Dewan, D. Heo and H. Beyenal. 2008. Environ. Sci. Technol. 42 (22): 8591–8596.
Du, Z.W., H.R. Li and T.Y. Gu. 2007. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25:464– 482.
Fan, Y. Z., H. Q. Hu and H. Liu. 2007. Enhanced coulombic efficiency and power density of air–cathode microbial fuel cells with an improved cell configuration. J J. Power Sources. 171: 348–354.
Fang, Z., S. Tomonori, C. Shaoan, A. H. Michael and B. E. Logan. 2010. Microbial Fuel Cell Cathodes with Poly (dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors. Environ. Sci. Technol. 44: 1490–1495.
Feng, Y., X. Wang, B.E. Logan and H. Lee. 2008. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl. Microbiol. Biotechnol. 78: 873–880.
He, Z., S. D. Minteer and L. Angenent. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39: 5262–7.
He, Z., N. Wagner, S.D. Minteer and L.T. Angenent. 2006. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 40: 5212–7.
Heilmann, J. and B. E. Logan. 2006. Production of electricity from protein using single chamber microbial fuel cell, Water Environ. Res. 78: 1716–1721.
Ieropoulos, I. A., J. Greenman, C. Melhuish and J. Hart. 2005. Comparative study of three types of microbial fuel cell. Enzyme Microb. Technol. 37: 238-245.
Ieropoulos ,I,, Greenman, J., Melhuish, C .2008. Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int J Energy Res 32:1228–1240
Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho and B. H. Kim. 2004. Construction and operation of a novel mediator and membrane-less microbial fuel cell. Process Biochem. 39: 1007-1012.
Kim, J. R., G. C. Premier, F. R. Hawkes, R. M. Dinsdale and A. J. Guwy. 2009. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Power Sources. 187 (2): 393–399.
Liu, H. and B. E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38: 4040–4046.
Liu, H., S. A. Cheng and B. E. Logan. 2005. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39: 658–662.
Logan, B. E., C. Murano, K. Scott, N. D. Gray and I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Resour. 39: 942–952.
Logan, B. E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller , S. Freguia, P. Aelterman ,W. Verstraete and K. Rabaey. 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40 (17): 5181-5192.
Logan, B. E. 2008. Microbial fuel cells. John Wiley & Sons, Inc: New York.
Logan, B. E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7 (5): 375-381
Min, B. and B. E. Logan.2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38: 5809–5814
Min, B., J. R. Kim, S. Oh, J. M. Regan and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Resour. 39: 4961–4968.
Pant, D., G. V. Bogaert, L. Diels and K. Vanbroekhoven. 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour. Technol. 101: 1533-1543.
Pham, T. H., K. Rabaey, P. Aelterman, P. Clauwaert, L. D. Schamphelaire , N. Boon and W. Verstraete. 2006. Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng. Life Sci. 6: 285–292.
Rabaey, K. and W. Verstraete. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23: 291–298.
Reimers, C. E., L. M. Tender, S. Fertig and W. Wang. 2001. Harvesting energy from the marine water interface. Environ. Sci. Technol. 35: 192–195.
Ren, H., Hyung-Sool, L., Junseok, C.2012. Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges. Microfluid Nanofluid. 13:353-381.
Ringeisen, B. R., E. Henderson, P. K. Wu, J. Pietron, R. Ray and B. Little. 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40: 2629–2634.
Rodrigo, M. A., P. Canizares, J. Lobato, R. Paz, C. Saez and J. J. Linares. 2007. Production of electricity from the treatment of urban waste water using a microbial fuel cell. J. Power Sources. 169: 198–204.
Tender, L.M., Gray, S.A., Groveman, E., Lowy, D.A., Kauffman, P., Melhado,J., Tyce, R.C., Flynn, D., Petrecca, R., Dobarro, J .2008. The first demonstration of a microbial fuel cell as a viable power supply:powering a meteorological buoy. J Power Sources 179:571–575
Zhang, F., Lei, T ., Zhen, H. 2011. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. Journal of power Sources. 199:9568-9573.
Zuo, Y., S. Cheng, D. Call and B.E. Logan. 2007. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ. Sci. Technol. 41: 3347–3353.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔