(3.238.130.97) 您好!臺灣時間:2021/05/18 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳湘鈞
研究生(外文):Hsiang-Chun Chen
論文名稱:Pitch-Yaw串接型機器蛇之創新表達式與攀階之步態規劃
論文名稱(外文):A Novel Representation and Gait Planning of Snake Robots with Pitch-Yaw Structure for Stair Climbing
指導教授:周瑞仁周瑞仁引用關係
指導教授(外文):Jui-Jen Chou
口試委員:艾群黃緒哲顏炳郎
口試委員(外文):Chyung Ay
口試日期:2012-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:51
中文關鍵詞:Trihedron機器蛇Pitch-Yaw攀爬階梯
外文關鍵詞:Trihedronsnake robotpitch-yawclimbingstair
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一套針對pitch-yaw交互串接型機器蛇之創新表達式:基於空間中移動Trihedron座標的概念,導出針對連續分段直線之Trihedron座標系統表示式,建構高自由度機器蛇各相鄰旋轉軸之簡潔齊次關係。由於pitch-yaw的串接機構與階梯環境的特性,考量機器蛇攀爬階梯時之姿態,將旋轉軸角度分三種狀況:0°、+90°或−90°進行探討。且僅用齊次矩陣的行平移與變號即能表達相鄰關節之座標轉換關係。可完全避免傳統的Denavit-Hartenberg表示法繁雜的矩陣乘積運算。最後,應用於此創新表達式進一步描述攀階運動整個過程,包括六個姿態,初始狀態、前端舉升、前端外展、轉折點平移、尾部抬升與初始化。結果證實一節數18節pitch-yaw交互串接之機器蛇,可攀爬級高25公分、級深25公分與級寬100公分之階梯。此創新表達式可簡化運算之複雜度、更為直觀地和機器蛇的姿態連結。

A novel representation for snake robots with pitch-yaw connection in series is proposed in this research. Trihedron-based coordinate systems for the expression of consecutive segments are established to describe snake robots with pitch-yaw structure, which are derived from the conventional Trihedron, usually for smooth curves in space. Furthermore, considering pitch-yaw structure and staircase environment, we simplify joint angles in three kinds while climbing: 0°, +90°, or −90°. The relation of adjoining joints can be expressed in homogeneous matrix and transformed simply by column shift and sign change. Thus, the complex matrix multiplications can be avoided, which often occur in the traditional Denavit-Hartenberg expression. Finally, we use the novel expression to depict the six configurations in stair climbing: initial state, rising, out-reaching, shifting at turning points, tail lifting, and initializing. The verification is done on the snake robot with 18 pitch-yaw segments by WebotsTM, which could climb the stairs with 25 cm of raiser height, 25 cm of tread depth, and 100 cm of tread width. The novel representation is proved to be much less computational complexity, more intuitive and direct link to robot configurations.

口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
符號表 x
第一章 前言 1
第二章 文獻探討 3
2.1 機器蛇之型態分類 3
2.2 Pitch-Yaw交互串接機構 7
2.3 串接型之Denavit-Hartenberg表示法 8
2.4 空間中的Trihedron移動座標系統 9
2.5 機器蛇之運動規劃 11
第三章 材料與方法 12
3.1 Pitch-Yaw串接型機器蛇表達式之推導 12
3.1.1 分段直線之Trihedeon表示式與推導 12
3.1.2 調整之Denavit-Hartenberg表示法 20
3.2 階梯環境與攀階規劃 22
3.3 Pitch-Yaw機器蛇於階梯環境下相鄰兩旋轉軸之關係式 28
3.3.1 情況一:旋轉角度θi+1為 0° 28
3.3.2 情況二:旋轉角度θi+1為 +90° 30
3.3.3 情況三:旋轉角度θi+1為 −90° 31
3.3.4 小結 33
第四章 結果與討論 36
4.1 分段直線之Trihedron表示式之攀階步態規劃 36
4.1.1 初始狀態 36
4.1.2 前端舉升 37
4.1.3 前端外展 38
4.1.4 轉折點平移 40
4.1.5 尾部抬升 45
4.1.6 初始化 45
4.2 攀階步態之模擬 46
第五章 結論 48
參考文獻 49


Burdick, J. W., and J. Radford, and G.S. Chirikjian. 1993. A “sidewinding” locomotion gait for hyper-redundant robots. IEEE International Conference on Robotics and Automation. Atlanta, USA. 2-6 May. 3:101-106.
Chen, L., Y. Wang, S. Ma, and B. Li. 2004. Studies on lateral rolling locomotion of a snake robot. IEEE International Conference on Robotics and Automation. New Orleans, LA. 26 April-1 May. 5:5070-5074.
Denavit, J. and R. S. Hartenberg. 1955. A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech 23: 215–221
Granosik, G., M. G. Hansen and J. Borenstein. 2005. The OmniTread serpentine robot with pneumatic joint actuation. Proceedings of the Fifth International Workshop on Robot Motion and Control. Dymaczewo, Poland. 23-25 June. pp: 105-110.
Hatton, R. L and H. Choset. 2009. Generating gaits for snake robots by annealed chain fitting and keyframe wave extraction. IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA. 11-15 October. pp: 840-845.
Hirose Robotic Lab. 2012. On-line available at: http://www-robot.mes.titech.ac.jp/robot/snake/acm-r3/acm-r3_e.html. Accessed 20 April 2013.
Hirose, S. 1993. Biologically Inspired Robots (Snake-like Locomotors and Manipulators). New York: Oxford University Press.
Hsieh, C. Y. 2007. Gait planning and analysis for stair climbing of snake robot. Master Thesis. Taiwan: National Taiwan University, Department of Bio-Industrial Mechatronics Engineering, Taipei, Taiwan.
Klaassen, B. and K.L. Paap. 1999. GMD-snake 2: A snake like robot driven by wheels and a method for motion control. IEEE International Conference on Robotics and Automation. Detroit, USA. 10-15 May. 4:3014-3019.
Liu, Y. L. 2009. Automatic Generation of stair-ascending gait for snake robot using genetic algorithms. Master Thesis. Taiwan: National Taiwan University, Department of Bio-Industrial Mechatronics Engineering, Taipei, Taiwan.
Matsuno, F. and H. Sato. 2005. Trajectory tracking control of snake robots based on dynamic model. IEEE International Conference on Robotics and Automation. Barcelona, Spain. 18-22 April. pp: 2029-3034.
McKenna, J. C., D. J. Anhalt, F. M. Bronson, H. B. Brown, M. Schwerin, E. Shammas and H. Choset. 2008. Toroidal Skin Drive for Snake Robot Locomotion. IEEE International Conference on Robotics and Automation. Pasadena, USA. 19-23 May. pp: 1150-1155.
Mori, M. and S. Hirose. 2001. Develop of active cord mechanism ACM-R3 with agile 3D mobility. IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, USA. 29 October -3 November. 3:1552-1557.
NASA Snakebot. On-line available at: http://history.arc.nasa.gov/Astrogram/Astrogram_2000_10_16.pdf. Accessed 20 April 2012.
Nilsson, M. 1997. Snake robot for free climbing. IEEE International Conference on Robotics and Automation. Albuquerque, USA. 20-25 April. 4:3415-3420
Snyder, R. 2001. Robots assist in search and rescue efforts at WTC. IEEE Robotics and Automation Magazine. 8: 26-28.
Ye, C., S. Ma, B. Li, and Y. Wang. 2004. Locomotion control of a novel snake-like robot. International Conference on Robotics and Biomimetics. Shenyang, China. 22-24 August. pp: 925-930.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top