(3.238.96.184) 您好!臺灣時間:2021/05/15 06:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江佳倫
研究生(外文):Chia-Lun Chiang
論文名稱:柳橙廢棄物於微生物燃料電池產電之研究
論文名稱(外文):Electricity Production by Using Microbial Fuel Cell during Treatment of Orange Wastes
指導教授:周楚洋
口試委員:陳力騏李允中
口試日期:2013-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:68
中文關鍵詞:微生物燃料電池庫倫效率內電阻柳丁
外文關鍵詞:Microbial fuel cellsOrange wastesElectricity productionImmobilized cellsGraphite powder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:412
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微生物燃料電池係兼具處理有機污染物與產生電能之一項技術,對於環境的永續有相當重要的價值。一般的微生物燃料電池主要組成包含電極、反應槽、曝氣裝置、基質、導電中介質、質子交換膜與菌種。本研究採用空氣陰極式微生物燃料電池,以碳布為電極的材料,不使用質子交換膜,但利用陰極與陽極適度的距離以阻隔氧氣進入;菌種來自養豬廠廢水處理系統之厭氧汙泥,經過煮沸前處理後,再以固定化技術固定菌種於醋酸纖維中,而基質除了人工廢水外,也使用柳丁榨汁廢棄物為基質料源。本研究之目的在於以食品廢棄物做為微生物燃料電池之產電基質,找出適宜的操作方式並評估其產電效能。
本實驗之操作變因主要分為兩大類:1. 有無添加石墨粉;2. 三種不同的基質組成 (100 %人工廢水、50%人工廢水與50%柳丁廢水、100 %柳丁廢水)。同時也評估以柳丁廢棄物為基質的三種不同有機負荷時(4 g/L/d、15.44 g/L/d及42.75 g/L/d) 的產電效能。
實驗結果顯示在操作條件為:無添加石墨粉、pH為5、有機負荷4 g/L/d、基質為100 %人工廢水時效能最好,其COD去除率達84.84± 2.09 %,最大功率密度1.47 mW/m2,電流密度為20.65 mA/m2,以及庫倫效率為0.370 %。在加入柳丁廢棄物基質後,則以有機負荷4 g/L/d時混合等比例人工廢水效果最好,其COD去除率為88.36± 2.50 %,最大功率密度0.26 mW/m2時,電流密度為4.55 mA/m2,庫倫效率為0.186%。此外,在固定化微生物有無添加石墨粉的比較試驗,在有機負荷同為15.44 g/L/d時,以沒有添加的試驗組有較好的電池效能,其COD去除率可達73.91± 8.33 %,最大功率密度為0.016 mW/m2、電流密度為0.84 mA/m2,以及庫倫效率為0.005 %。

Microbial fuel cell (MFCs) is a technology which possesses functions of pollution control and electricity production, with significant value in sustainability to our environment. The typical MFC consists of electrodes, reactor, aerator, substrate,mediator, proton exchange membrane (PEM) and inoculum. The configuration of MFC used in this study was an air-cathode, single-chambered MFC, in which carboncloth was used as electrode and to block the diffusion of oxygen with proper layout of electrodes, so that PEM was not applied in this study. Inoculum, the anaerobic sludge, was obtained from a swine wastewater treatment system. After boiling pretreatment, the sludge was entrapped with cellulose acetate. Besides synthetic wastewater, orange waste from juice shop was also used as substrate in this study. The purpose of this study is to find out the proper operational methods for using the food waste as the substrate of MFC and to evaluate its performance of electricity production.
Two groups of operational parameters were tested in this study: 1. with or without addition of graphite powder for immobilized cells, and 2. three different substrate compositions for reactor feeding (100% artificial wastewater, 50% artificial wastewater and 50% orange waste, 100% orange waste). Performance of electricity production at three different organic loading rates (4 g/L/d、15.44 g/L/d及42.75 g/L/d) of using orange waste as substrate were evaluated.
Experimental results showed at the operational condition: without addition of graphite powder in immobilized cells, pH 5, 4 g/L/d organic loading rate, 100% artificial wastewater as substrate, the system had the best performance. It was observed that 88.84

誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 vii
第一章前言與研究目的 1
1-1 前言 1
1-2 研究目的 2
第二章文獻探討 3
2-1 微生物燃料電池 3
2-2 陽極槽的反應與操作原理 5
2-2-1 細菌、基質之反應 5
2-2-2 食品廢棄物 7
2-2-3 添加水果廢棄物暨微生物產氫反應 8
2-3 陰極構造與反應 10
2-4 影響MFC產電效能之電化學參數 12
2-4-1 極化現象 12
2-4-2 電催化現象 15
2-4-3 菌種之生長速率 16
2-4-4 電池效能評估之電學參數 17
2-5 固定化微生物 19
第三章材料與方法 21
3-1 實驗材料 22
3-1-1 菌種 22
3-1-2 固定化菌種 23
3-1-3 基質 27
3-1-4 人工廢水與緩衝溶液之配製 29
3-1-5 反應槽架設 30
3-1-6 實驗設備 31
3-2 實驗方法 34
3-2-1預備試驗及改良 34
3-2-2分析方法 37
3-2-3產電效能 37
3-2-4分析與計算 38
第四章結果與討論 40
4-1 石墨粉之添加與否對MFC效能之影響 40
4-1-1開路電壓 (OCV) 40
4-1-2 COD去除率 42
4-1-3極化曲線與最大功率密度 43
4-1-4庫倫效率 45
4-2 基質改變對MFC效能之影響 47
4-2-1開路電壓 (OCV) 47
4-2-2 COD去除率 52
4-2-3極化曲線與最大功率密度 54
4-2-4庫倫效率 59
第五章結論與建議 62
參考文獻 64

1.王俊傑、黃士杰、李穎弦、楊汶釧、林修正,電催化及電催化觸媒,化工第56卷第5期 (2009)。
2.行政院環保署。2012。網址:http://210.69.101.110/epa/stmain.jsp?sys=100。上網日期:2012-12-04。
3.行政院農業委員會農業試驗所嘉義農業試驗分所。2013。網址:http://www.caes.gov.tw/orange/new_page_2.htm。上網日期:2013-03-31。
4.林健三。1988。乾式厭氣消化法處理有機固體廢棄物之研究。碩士論文。台南:成功大學環境工程研究所。
5.吳亞謙。2011。添加石墨粉對固定化微生物燃料電池產電效能之影響。碩士論文。台北:台灣大學生物產業機電工程研究所。
6.陳國誠。2000。生物固定化技術與產業應用。初版,33-36,417-423。台北:茂昌。
7.陳姍玗、張嘉修。2002。處理含染料廢水之固定化生物觸媒。國科會計畫:NSC-89-2214-E-035-015。
8.黃郁雯。2012。微生物燃料電池與儲電系統效能之探討。碩士論文。台北:台灣大學生物產業機電工程研究所。
9.劉安琪。1996。應用固定化細胞技術處理豬糞尿廢水。碩士論文。台北:台灣大學生物產業機電工程系研究所。
10.羅一中。2010。接種量及進料pH對固定化微生物燃料電池效能之影響。碩士論文。台北:台灣大學生物產業機電工程系研究所。
11.Awad, M.I., Sata, S., Kaneda, K., Ikematsu, M., Okajima, T., and Ohsaka, T., 2006. Electrochemistry Communications, 8: 1263-1269.
12.Biffinger, J.C., Pietron, J., Bretschger, O., Nadeau, L.J., Johnson, G.R., Williams, C.C., Nealson, K.H., Ringeisen, B.R. 2008. The influence of acidity on microbial fuel cells containing Shewanella oneidensis. 24 (4): 900-905
13.Bond, D. R., and D. R. Lovley. 2003. Electricity production by geobacter sulfurreducens attached to electrodes. Applied and environmental microbiology 69(3): 1548-1555.
14.Chaudhuri, S.K. and Lovly, D.R. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21 (10) , 1229-1232.
15.Cheng, S., and B. E.Logan, 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells.Electrochemistry Communications,9(3): 492-496.
16.Cheng, S., H.Liu, and B. E.Logan, 2006. Increased performance of single-chamber microbial fuel cells using an improved cathode structure.Electrochemistry Communications,8(3): 489-494.
17.Dumas, C., A. Mollica, D. Fe´ron, R. Basse´guy, L. Etcheverry and A. Bergel. 2007. Marine microbial fuel cell:Use of stainless steel electrodes as anode and cathode materials. Electrochemical Acta 53:468-473.
18.Fan Y., E.Sharbrough, and H.Liu, 2008. Quantification of the internal resistance distribution of microbial fuel cells.Environmental Science andTechnology,42(21): 8101-8107.
19.Fan, Y., H. Hu, and H. Liu, 2007. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration.Journal of Power Sources,171(2): 348-354.
20.Gonzalez del Campo, A., P.Cañizares, J. Lobato, M. A.Rodrigo, and F. J. Fernandez, 2012. Electricity production by integration of acidogenic fermentation of fruit juice wastewater and fuel cells.International Journal of Hydrogen Energy,37(11): 9028-9037.
21.Grigelmo-Miguel, N., and O.Martı́n-Belloso, 1998. Characterization of dietary fiber from orange juice extraction.Food Research International,31(5): 355-361.
22.Grohmann, K., R.G. Cameron , and B.S. Buslig. 1994. Fermentationof sugars in orange peel hydrolysates to ethanol by recombinantEscherichia coli K011. Appl. Biochem. Biotechnol. 51: 423-435.
23.Grohmann, K., R.G. Cameron , and B.S. Buslig. 1994. Fractionationand pretreatment of orange peel by dilute acid hydrolysis. Bioresour.Technol. 54: 129-141.
24.Han, S. K., and H. S.Shin, 2004. Biohydrogen production by anaerobic fermentation of food waste.International Journal of Hydrogen Energy,29(6): 569-577.
25.Han, S. K., and H. S. Shin, 2004. Performance of an innovative two-stage process converting food waste to hydrogen and methane.Journal of the Air & Waste Management Association.54(2): 242-249.
26.Infantes, D., A. González del Campo, J. Villaseñor, and F. J. Fernández, 2011. Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation.International Journal of Hydrogen Energy,36(24): 15595-15601.
27.Kaiser,F., V. Aschmann, M. Effenberger, and A. Gronauer, 2003. Dry fermentationofagricultural Substrates.
28.Karyakin, A. A. 2012. Principles of direct (mediator free) bioelectrocatalysis.Bioelectrochemistry,88: 70-75.
29.Ketep, S. F., A.Bergel, M. Bertrand, W.Achouak, and E.Fourest, 2012. Lowering the applied potential during successive scratching/re-inoculation improves the performance of microbial anodes for microbial fuel cells.Bioresource Technology, 127: 448-455.
30.Kim, B.H., Park, H.S., Kim, K.J., Kim, G.T., Chang, I.S., Lee, J. and Phung, N.T. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbial. Biotechnol. 63 (6) , 672-681.
31.Kim, J.R., G. C. Premier, F.R. Hawkes, R.M. Dinsdale, and A.J. Guwy. 2009. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Journal of Power Sources 187:393-399.
32.Kim, H.J., Park, H.S., Hyun, M.S., Chang, I.S.,Kim, M. and Kim, B.H. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30 (2) , 145-152.
33.Kim, N., Choi, Y., Jung, S., Kim, S., 2000. Effect of initial carbon sources on theperformance of microbial fuel cells containing Proteus vulgaris. Biotechnol.Bioeng. 70, 109-114.
34.Kumar, S., and Phani, K.L.N. 2009. J. Power Sources, 187: 19-24.
35.Larrea, M. A., Y. K.Chang, and F. Martı́nez Bustos, 2005. Effect of some operational extrusion parameters on the constituents of orange pulp.Food Chemistry,89(2): 301-308.
36.Liu, H., S.Cheng, L.Huang, and B. E. Logan, 2008. Scale-up of membrane-free single-chamber microbial fuel cells.Journal of Power Sources,179(1), 274-279.
37.Liu, H., Cheng, S.A., Logan, B.E., 2005. Production of electricity from acetate orbutyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39,658–662.
38.Liu, H., and B. E. Logan, 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.Environmental Science andTechnology,38(14): 4040-4046.
39.Logan, B., S. Cheng, V. Watson, and G. Estadt, 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science and Technology,41(9): 3341-3346.
40.Logan, B. E., B.Hamelers, R.Rozendal, U.Schröder, J.Keller, S.Freguia, P. Aelterman, W. Verstraete, and K.Rabaey, 2006. Microbial fuel cells: methodology and technology.Environmental Science and Technology,40(17): 5181-5192.
41.Malandra, L., Wolfaardet, G., Zietsman, A. and Viljoen-Bloom, M..2003. Microbiology of a biological contactor for winery wastewatertreatment. Water Res, 37: 4125-4134.
42.Middaugh, J., S.Cheng, W.Liu, and R.Wagner, 2006. How to make cathodes with a diffusion layer for single-chamber microbial fuel cells.
43.Min, B., J.R. Kim, S.E. Oh, J.M. Regan and B.E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Research 39:4961-4968.
44.Mohan, S. V., and K. Chandrasekhar, 2011. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Bioresource Technology,102(14): 7077-7085.
45.Mohan, Y., Muthu Kumar, S.M., Das, D., 2008. Electricity generation using microbialfuel cells. Int. J. Hydrogen Energy 33, 423–426.
46.Mueller, W. A. 1960. Theory of the polarization curve technique for studying corrosion and electrochemical protection.Canadian Journal of Chemistry,38(4): 576-587.
47.Nasirahmadi, S., and A. A.Safekordi, 2011. Whey as a substrate for generation of bioelectricity in microbial fuel cell using E. coli.International Journal of Environmental Science and Technology,8(4), 823-830.
48.Oh, S. E., and B. E. Logan, 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.Applied Microbiology and Biotechnology,70(2): 162-169.
49.Padilla, R., Benito, M., Rodriguez, L., Serrano-Lotina, A., and Daza, L. 2009. J. Power Sources, 192: 114-119.
50.Pant, D., G. V. Bogaert, L. Diels, and K.Vanbroekhoven, 2009. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.Bioresource Technology,101(6): 1533-1543.
51.Rabaey, K., P.Clauwaert, P.Aelterman, and W. Verstraete, 2005. Tubular microbial fuel cells for efficient electricity generation.Environmental Science andTechnology,39(20): 8077-8082.
52.Rabaey, K., P.Lissens, G., Siciliano, S.D., Verstraete,W. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25 (18) , 1531-1535.
53.Raimbault, M. 1998. General and microbiological aspects of solid substrate fermentation.Electronic Journal of Biotechnology,1(3): 26-27.
54.Rezaei, F., Xing, D., Wagner, R., Regan, J.M., Richard, T.L., Logan, B.E., 2009b.Simultaneous cellulose degradation and electricity production by Enterobactercloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75 (11), 3673–3678.
55.Richards, B. K., R. J. Cummings, W. J. Jewell, and F. G. Herndon, 1991. High solids anaerobic methane fermentation of sorghum and cellulose. Biomass and Bioenergy,1(1): 47-53.
56.Roels, J. A. Energetics and kinetics in biotechnology.Amsterdam: Elsevier, 1983.
57.Schröder, U., Niessen, J. and Scholz, F. 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. 42 (25) , 2880-2883.
58.Sreela-Or, C., T.Imai, P.Plangklang, and A.Reungsang, 2011. Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures.International Journal of Hydrogen Energy,36(21): 14120-14133.
59.Sun, M., Sheng, G.-P., Mu, Z.-X., Liu, X.-W., Chen, Y.-Z., Wang, H.-L., Yu, H.-Q.,2009b. Manipulating the hydrogen production from acetate in a microbialelectrolysis cell-microbial fuel cell-coupled system. J. Power Sources 191,338–343.
60.Venkata Mohan, S., G.Mohanakrishna, and P. N. Sarma, 2010. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell.Bioresource Technology,101(3): 970-976.
61.Yahya, A., and Z. Ibrahim, Development of microbial fuel cell using cellulose-degrading bacteria.ICENV.
62.Yokoyama, H., M.Waki, A.Ogino, H. Ohmori, and Y.Tanaka, 2007. Hydrogen fermentation properties of undiluted cow dung.Journal of Bioscience and Bioengineering,104(1): 82-85.
63.You, S., Q. Zhao, J. Zhang, J. Jiang, C. Wan, M. Du, and S. Zhao. 2007. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. Journal of Power Sources 173:172-177.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1.王志誠,金融行銷之控制及法制變革:金融消費者保護法之適用及解釋,萬國法律,第179期,頁2-10,2011年10月。
2. 2.王志誠,銀行之分業與跨業-防火牆之建設,月旦法學雜誌,第179期,頁234-247,2010年4月。
3. 3.王志誠,銀行銷售金融商品之義務與責任-規範原則與實務爭議,月旦法學雜誌,第183期,頁182-207,2010年8月。
4. 4.朱柏松,民法定型化契約規範之適用與解釋,月旦法學雜誌,第54期,頁52-64,1999年11月。
5. 6.朱柏松,論廣告媒體業者之損害賠償責任─兼評最高法院九十年度台上字第二○二七號判決,月旦法學雜誌,第91期,頁8-27,2002年12月。
6. 8.李智仁,論金融卡遭偽造或盜用所生之損害分擔問題-以日本存款人保護法為觀察重點,存款保險資訊季刊,第19卷第4期,頁36-51,2006年12月。
7. 10.杜怡靜,從消費者保護之觀點檢討金融卡盜領之風險分擔原則-以九十年度上、字第三三0號判決為例,月旦法學雜誌,第108期,頁212-222,2004年5月。
8. 12.林更盛,論契約控制的相關理論-從從John Rawls的正義理論談起,東海大學法學研究,第30期,頁1-73,2009年6月。
9. 14.張志朋,信用卡法律關係及盜刷之風險分擔,律師雜誌,第349期,頁76-82,2008年10月。
10. 18.陳忠五,醫療行為與消費者保護法服務責任之適用領域-臺灣臺北地方法院八五年度訴字第五一二五號與臺灣高等法院八七年度上字第一五一號(馬偕紀念醫院肩難產案件)判決評釋,臺灣本土法學雜誌,第7期,頁36-61,2000年2月。
11. 19.陳洸岳,金融消費者保護法下業者損害賠償責任初探,月旦法學雜誌,第199期,頁5-25,2011年12月。
12. 21.陳肇鴻,論結構債之契約關係及指定用途金錢信託之法律性質,軍法專刊,第55卷第3期,頁111-133,2009年6月。
13. 22.陳聰富,契約自由與定型化契約的管制,月旦法學雜誌,第91期,頁51-62,2002年12月。
14. 25.曾品傑,論消費者之概念-最高法院相關判決評釋,臺灣本土法學雜誌,第49期,頁153-172,2003年8月。
15. 26.曾品傑,論消費者保護法上定型化契約規定對於非消費關係之適用¬-最高法院四則相關判決評釋(上),臺灣本土法學雜誌,第53期,頁207-224,2003年12月。