1.王俊傑、黃士杰、李穎弦、楊汶釧、林修正,電催化及電催化觸媒,化工第56卷第5期 (2009)。
2.行政院環保署。2012。網址:http://210.69.101.110/epa/stmain.jsp?sys=100。上網日期:2012-12-04。
3.行政院農業委員會農業試驗所嘉義農業試驗分所。2013。網址:http://www.caes.gov.tw/orange/new_page_2.htm。上網日期:2013-03-31。
4.林健三。1988。乾式厭氣消化法處理有機固體廢棄物之研究。碩士論文。台南:成功大學環境工程研究所。5.吳亞謙。2011。添加石墨粉對固定化微生物燃料電池產電效能之影響。碩士論文。台北:台灣大學生物產業機電工程研究所。6.陳國誠。2000。生物固定化技術與產業應用。初版,33-36,417-423。台北:茂昌。
7.陳姍玗、張嘉修。2002。處理含染料廢水之固定化生物觸媒。國科會計畫:NSC-89-2214-E-035-015。
8.黃郁雯。2012。微生物燃料電池與儲電系統效能之探討。碩士論文。台北:台灣大學生物產業機電工程研究所。9.劉安琪。1996。應用固定化細胞技術處理豬糞尿廢水。碩士論文。台北:台灣大學生物產業機電工程系研究所。10.羅一中。2010。接種量及進料pH對固定化微生物燃料電池效能之影響。碩士論文。台北:台灣大學生物產業機電工程系研究所。11.Awad, M.I., Sata, S., Kaneda, K., Ikematsu, M., Okajima, T., and Ohsaka, T., 2006. Electrochemistry Communications, 8: 1263-1269.
12.Biffinger, J.C., Pietron, J., Bretschger, O., Nadeau, L.J., Johnson, G.R., Williams, C.C., Nealson, K.H., Ringeisen, B.R. 2008. The influence of acidity on microbial fuel cells containing Shewanella oneidensis. 24 (4): 900-905
13.Bond, D. R., and D. R. Lovley. 2003. Electricity production by geobacter sulfurreducens attached to electrodes. Applied and environmental microbiology 69(3): 1548-1555.
14.Chaudhuri, S.K. and Lovly, D.R. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21 (10) , 1229-1232.
15.Cheng, S., and B. E.Logan, 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells.Electrochemistry Communications,9(3): 492-496.
16.Cheng, S., H.Liu, and B. E.Logan, 2006. Increased performance of single-chamber microbial fuel cells using an improved cathode structure.Electrochemistry Communications,8(3): 489-494.
17.Dumas, C., A. Mollica, D. Fe´ron, R. Basse´guy, L. Etcheverry and A. Bergel. 2007. Marine microbial fuel cell:Use of stainless steel electrodes as anode and cathode materials. Electrochemical Acta 53:468-473.
18.Fan Y., E.Sharbrough, and H.Liu, 2008. Quantification of the internal resistance distribution of microbial fuel cells.Environmental Science andTechnology,42(21): 8101-8107.
19.Fan, Y., H. Hu, and H. Liu, 2007. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration.Journal of Power Sources,171(2): 348-354.
20.Gonzalez del Campo, A., P.Cañizares, J. Lobato, M. A.Rodrigo, and F. J. Fernandez, 2012. Electricity production by integration of acidogenic fermentation of fruit juice wastewater and fuel cells.International Journal of Hydrogen Energy,37(11): 9028-9037.
21.Grigelmo-Miguel, N., and O.Martı́n-Belloso, 1998. Characterization of dietary fiber from orange juice extraction.Food Research International,31(5): 355-361.
22.Grohmann, K., R.G. Cameron , and B.S. Buslig. 1994. Fermentationof sugars in orange peel hydrolysates to ethanol by recombinantEscherichia coli K011. Appl. Biochem. Biotechnol. 51: 423-435.
23.Grohmann, K., R.G. Cameron , and B.S. Buslig. 1994. Fractionationand pretreatment of orange peel by dilute acid hydrolysis. Bioresour.Technol. 54: 129-141.
24.Han, S. K., and H. S.Shin, 2004. Biohydrogen production by anaerobic fermentation of food waste.International Journal of Hydrogen Energy,29(6): 569-577.
25.Han, S. K., and H. S. Shin, 2004. Performance of an innovative two-stage process converting food waste to hydrogen and methane.Journal of the Air & Waste Management Association.54(2): 242-249.
26.Infantes, D., A. González del Campo, J. Villaseñor, and F. J. Fernández, 2011. Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation.International Journal of Hydrogen Energy,36(24): 15595-15601.
27.Kaiser,F., V. Aschmann, M. Effenberger, and A. Gronauer, 2003. Dry fermentationofagricultural Substrates.
28.Karyakin, A. A. 2012. Principles of direct (mediator free) bioelectrocatalysis.Bioelectrochemistry,88: 70-75.
29.Ketep, S. F., A.Bergel, M. Bertrand, W.Achouak, and E.Fourest, 2012. Lowering the applied potential during successive scratching/re-inoculation improves the performance of microbial anodes for microbial fuel cells.Bioresource Technology, 127: 448-455.
30.Kim, B.H., Park, H.S., Kim, K.J., Kim, G.T., Chang, I.S., Lee, J. and Phung, N.T. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbial. Biotechnol. 63 (6) , 672-681.
31.Kim, J.R., G. C. Premier, F.R. Hawkes, R.M. Dinsdale, and A.J. Guwy. 2009. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Journal of Power Sources 187:393-399.
32.Kim, H.J., Park, H.S., Hyun, M.S., Chang, I.S.,Kim, M. and Kim, B.H. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30 (2) , 145-152.
33.Kim, N., Choi, Y., Jung, S., Kim, S., 2000. Effect of initial carbon sources on theperformance of microbial fuel cells containing Proteus vulgaris. Biotechnol.Bioeng. 70, 109-114.
34.Kumar, S., and Phani, K.L.N. 2009. J. Power Sources, 187: 19-24.
35.Larrea, M. A., Y. K.Chang, and F. Martı́nez Bustos, 2005. Effect of some operational extrusion parameters on the constituents of orange pulp.Food Chemistry,89(2): 301-308.
36.Liu, H., S.Cheng, L.Huang, and B. E. Logan, 2008. Scale-up of membrane-free single-chamber microbial fuel cells.Journal of Power Sources,179(1), 274-279.
37.Liu, H., Cheng, S.A., Logan, B.E., 2005. Production of electricity from acetate orbutyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39,658–662.
38.Liu, H., and B. E. Logan, 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.Environmental Science andTechnology,38(14): 4040-4046.
39.Logan, B., S. Cheng, V. Watson, and G. Estadt, 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science and Technology,41(9): 3341-3346.
40.Logan, B. E., B.Hamelers, R.Rozendal, U.Schröder, J.Keller, S.Freguia, P. Aelterman, W. Verstraete, and K.Rabaey, 2006. Microbial fuel cells: methodology and technology.Environmental Science and Technology,40(17): 5181-5192.
41.Malandra, L., Wolfaardet, G., Zietsman, A. and Viljoen-Bloom, M..2003. Microbiology of a biological contactor for winery wastewatertreatment. Water Res, 37: 4125-4134.
42.Middaugh, J., S.Cheng, W.Liu, and R.Wagner, 2006. How to make cathodes with a diffusion layer for single-chamber microbial fuel cells.
43.Min, B., J.R. Kim, S.E. Oh, J.M. Regan and B.E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Research 39:4961-4968.
44.Mohan, S. V., and K. Chandrasekhar, 2011. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Bioresource Technology,102(14): 7077-7085.
45.Mohan, Y., Muthu Kumar, S.M., Das, D., 2008. Electricity generation using microbialfuel cells. Int. J. Hydrogen Energy 33, 423–426.
46.Mueller, W. A. 1960. Theory of the polarization curve technique for studying corrosion and electrochemical protection.Canadian Journal of Chemistry,38(4): 576-587.
47.Nasirahmadi, S., and A. A.Safekordi, 2011. Whey as a substrate for generation of bioelectricity in microbial fuel cell using E. coli.International Journal of Environmental Science and Technology,8(4), 823-830.
48.Oh, S. E., and B. E. Logan, 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.Applied Microbiology and Biotechnology,70(2): 162-169.
49.Padilla, R., Benito, M., Rodriguez, L., Serrano-Lotina, A., and Daza, L. 2009. J. Power Sources, 192: 114-119.
50.Pant, D., G. V. Bogaert, L. Diels, and K.Vanbroekhoven, 2009. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.Bioresource Technology,101(6): 1533-1543.
51.Rabaey, K., P.Clauwaert, P.Aelterman, and W. Verstraete, 2005. Tubular microbial fuel cells for efficient electricity generation.Environmental Science andTechnology,39(20): 8077-8082.
52.Rabaey, K., P.Lissens, G., Siciliano, S.D., Verstraete,W. 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25 (18) , 1531-1535.
53.Raimbault, M. 1998. General and microbiological aspects of solid substrate fermentation.Electronic Journal of Biotechnology,1(3): 26-27.
54.Rezaei, F., Xing, D., Wagner, R., Regan, J.M., Richard, T.L., Logan, B.E., 2009b.Simultaneous cellulose degradation and electricity production by Enterobactercloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75 (11), 3673–3678.
55.Richards, B. K., R. J. Cummings, W. J. Jewell, and F. G. Herndon, 1991. High solids anaerobic methane fermentation of sorghum and cellulose. Biomass and Bioenergy,1(1): 47-53.
56.Roels, J. A. Energetics and kinetics in biotechnology.Amsterdam: Elsevier, 1983.
57.Schröder, U., Niessen, J. and Scholz, F. 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. 42 (25) , 2880-2883.
58.Sreela-Or, C., T.Imai, P.Plangklang, and A.Reungsang, 2011. Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures.International Journal of Hydrogen Energy,36(21): 14120-14133.
59.Sun, M., Sheng, G.-P., Mu, Z.-X., Liu, X.-W., Chen, Y.-Z., Wang, H.-L., Yu, H.-Q.,2009b. Manipulating the hydrogen production from acetate in a microbialelectrolysis cell-microbial fuel cell-coupled system. J. Power Sources 191,338–343.
60.Venkata Mohan, S., G.Mohanakrishna, and P. N. Sarma, 2010. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell.Bioresource Technology,101(3): 970-976.
61.Yahya, A., and Z. Ibrahim, Development of microbial fuel cell using cellulose-degrading bacteria.ICENV.
62.Yokoyama, H., M.Waki, A.Ogino, H. Ohmori, and Y.Tanaka, 2007. Hydrogen fermentation properties of undiluted cow dung.Journal of Bioscience and Bioengineering,104(1): 82-85.
63.You, S., Q. Zhao, J. Zhang, J. Jiang, C. Wan, M. Du, and S. Zhao. 2007. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. Journal of Power Sources 173:172-177.