(3.226.72.118) 您好!臺灣時間:2021/05/13 07:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭元慶
研究生(外文):Yuan-Ching Peng
論文名稱:台灣野生稻穗部各器官其解剖結構及光合作用角色之探討
論文名稱(外文):Study of the anatomical structure and photosynthetic role of panicle organs of Oryza rufipogon Griff.
指導教授:黃文達黃文達引用關係
指導教授(外文):Wen-Dar Huang
口試委員:許明晃楊志維
口試委員(外文):Ming-Huang HsuZhi-Wei Yang
口試日期:2013-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:55
中文關鍵詞:台灣野生稻稻穗光合作用氣孔分佈葉綠體結構色素組成
外文關鍵詞:Oryza rufipogon Griffpanicle photosynthesisstomata distributionchloroplast ultrastructurepigments composition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  Oryza rufipogon為現行栽培稻之祖先,也為重要之育種資源。台灣野生稻亦屬於Oryza rufipogon 之一群,其學名為Oryza rufipogon Griff.,其生理特性值得深入探究。本研究針對具有長芒之台灣野生稻其穗部各光合器官(芒、內外穎、枝梗等)之解剖構造及色素組成進行觀察及比較,並輔以田間生育資料對其生理意義進行探討。結果顯示台灣野生稻芒僅有少量氣孔,其葉綠素含量極低,並非穗部主要之光合器官,剪芒處理則可能影響穗溫。其內外穎之氣孔主要分佈於內表皮,與栽培稻相同,且葉綠體之分佈靠近胚乳側,推論主要之生理功能為重新固定穀粒本身呼吸作用所釋放出之CO2。枝梗之氣孔密度及葉綠素含量最高,推測為穗部主要與外界進行氣體交換之器官,一次枝梗及穗軸其轉流能力高於二次枝梗及小枝梗。進一步於乳熟期觀察各器官之葉綠體超微結構,發現其光合作用效能之最大值出現於不同之穀粒充實期,且穗部各光合器官之葉綠體生命週期小於劍葉。比較芒中靠近維管束及近厚壁組織之葉綠體構造,則可判定芒中之光合作用較偏向C3路徑。
  總結而言,穗部各光合器官具有不同之生理功能,其主要功能與麥穗器官亦不盡相同,再固定呼吸作用之CO2對產量及米質之影響,以及枝梗及穗部光合作用作為供源之能力在育種過程中是否改變,都需要進一步研究。


Oryza rufipogon is considered to be the direct wild ancestor of cultivated rice (Oryza sativa L.), and significant genetic resource as well. The wild rice in Taiwan, Oryza rufipogon Griff. , is a subfamily of Oryza rufipogon and worthy to explore its physiological and morphological significances. This study was focused on the anatomical structure and pigment composition of panicle organs (awn, lemma, palea, rachis branch, etc) of Oryza rufipogon Griff. . Combinding the datas in the field, we can elucidate the photosynthetic roles of these panicle organs. The results show that awn has low stomata density, low chlorophyll contents, interpreting it is not an important ‘source’ in panicle. Meanwhile, clipping awns probably affects the panicle temperature. Stomata on lemma and palea were found in inner epidermis, corresponding to the observation in cultivated rice. The position of green tissue (near the grain) also indicate that re-fixing respired CO2 is the fuction of rice glumes. Rachis branch, with highest stomata density and chlorophyll content, is the main site of gas exchange in rice panicle. The translocation capabilities of panicle axis and primary branch are larger than secondary branch and pedicel.
Observation of the chloroplast ultrastructure in different organs reveals that maximum photosynthetic rate of these organs may appear in different grain-filling stages. Life span of chloroplast in panicle organs are shorter than flag leaf. Comparing the chloroplasts in awn showed that awn carries C3 photosynthesis characteristics.
Every rice panicle organs has its own physiological role, not the same as the ear of wheat. How CO2 re-fixation affects yield and quality and the contribution of panicle photosynthesis change in breeding process need further researches.


誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
附圖及附表目錄 viii
縮寫字對照 ix
前人研究
一、 台灣野生稻之重要性 1
二、 C3 禾榖類作物穗部光合作用之重要性 2
三、 穗部各綠色器官之功能及生理意義 4
四、 水稻穗部光合作用之前人研究 6
五、 本論文研究內容 7
材料與方法
一、 植物材料、種植及取樣時期 9
二、 穗部各光合器官之表面微細結構觀察 9
三、 穗部各光合器官葉綠體及葉綠素合成前驅物分佈情形 10
四、 穗部各光合器官之葉綠體結構 10
五、 穗部各光合器官葉綠素及其衍生物之含量 11
六、 以高效能液相層析儀分析穗部各光合器官葉黃素含量 13
七、 芒對穗溫的影響 14
結果
一、 水稻穗部各光合器官之氣孔分佈及表面微細構造觀察 15
二、 野生稻穗部各光合器官剖面及葉綠體、葉綠素合成前驅物分布情形 16
三、 野生稻穗部各光合器官之葉綠體結構比較 17
四、 穗部各光合器官葉綠素及其衍生物之含量 17
五、 芒對穗溫之影響 19
討論
一、 野生稻穗部各器官之生理意義及可能對穀粒充實之貢獻 20
二、 野生稻穗部各光合器官之葉綠體效能隨穀粒充實變化 22
三、 野生稻穗部各光合器官之色素組成與生理意義 23
四、 未來展望及結論 25
參考文獻 26

圖一、以掃描式電子顯微鏡觀察不同品種水稻芒之表面微細構造及氣孔分佈 34
圖二、以掃描式電子顯微鏡觀察不同品種水稻外穎之表面微細構造及氣孔分佈 35
圖三、以掃描式電子顯微鏡觀察不同品種水稻內穎之表面微細構造及氣孔分佈 36
圖四、以掃描式電子顯微鏡觀察小麥穗部器官之表面微細構造及氣孔分佈 37
圖五、以掃描式電子顯微鏡觀察台灣野生稻枝梗之表面微細構造及氣孔分佈 38
圖六、以掃描式電子顯微鏡觀察台灣野生稻種皮之表面微細構造 39
圖七、以掃描式電子顯微鏡觀察大穎稻護穎之表面微細構造及氣孔分佈 40
圖八、以共軛焦顯微鏡觀察台灣野生稻穗部器官剖面中之葉綠體分佈 41
圖九、以共軛焦顯微鏡觀察台灣野生稻及小麥其芒及外穎剖面中之葉綠體分佈 42
圖十、穿透式電子顯微鏡觀察台灣野生稻乳熟期時之穗部器官剖面 43
圖十一、穿透式電子顯微鏡觀察台灣野生稻乳熟期時穗部器官之葉綠體超微結構 44
圖十二、野生稻芒對穗溫的影響 45
圖十三、穗部光合器官及其推測功能之概要圖 46


表一、不同水稻品種及小麥及其穗部各器官之氣孔長度與氣孔密度 47
表二、台灣野生稻穗部器官剖面構造比較 48
表三、台灣野生稻乳熟期時穗部各器官之葉綠體超微結構比較 49
表四、台灣野生稻於不同榖粒充實期其穗部器官之葉綠素及類胡蘿蔔素含量 50
表五、台灣野生稻於不同榖粒充實期其穗部器官之葉綠素生合成前驅物含量 51
表六、台灣野生稻於不同榖粒充實期其穗部器官之吡啉百分比 52
表七、台灣野生稻於不同榖粒充實期其穗部器官之葉綠素崩解物含量 53

附圖一、台灣野生稻植株生育情形、取樣時期 54

附表一、以高效能液相層析儀分析穗部各光合器官之葉黃素組成 55




吳志文. 2006. 台灣野生稻生育, 穀粒外觀, 直鏈澱粉及儲藏性蛋白質變異性之研究. 臺灣大學農藝學研究所學位論文(2006 年): 1-106.
津田守誠. 1933. 生理器官としての稻芒の價値: 昭和八年十一月十一日受理. 日本作物學會紀事 5(4): 380-390.
楊棋明, 吳雅婷, 劉翠雅, 黃文達, 黃秀鳳, 趙璧玉. 2004. 高等植物非葉綠色組織之葉綠素 a/b 比值.
Ainsworth EA. 2008. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology 14(7): 1642-1650.
Ankele E, Kindgren P, Pesquet E, Strand A. 2007. In vivo visualization of Mg-protoporphyrin IX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. Plant Cell 19(6): 1964-1979.
Araus J, Brown H, Febrero A, Bort J, Serret M. 1993. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant, Cell & Environment 16(4): 383-392.
Ayeneh A, Van Ginkel M, Reynolds M, Ammar K. 2002. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research 79(2): 173-184.
Blum A. 1986. The effect of heat stress on wheat leaf and ear photosynthesis. Journal of experimental botany 37(1): 111-118.
Bort J, Brown RH, Araus JL. 1996. Refixation of respiratory CO2 in the ears of C3 cereals. Journal of experimental botany 47(10): 1567-1575.
Bort J, Febrero A, Amaro T, Araus J. 1994. Role of awns in ear water-use efficiency and grain weight in barley. Agronomie-Sciences des Productions Vegetales et de l''Environnement 14(2): 133-140.
Braumann T, Grimme LH. 1981. Reversed-phase high-performance liquid chromatography of chlorophylls and carotenoids. Biochimica et Biophysica Acta (BBA)-Bioenergetics 637(1): 8-17.
Brehelin C, Kessler F, van Wijk KJ. 2007. Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12(6): 260-266.
Bremner P, Rawson H. 1972. Fixation of 14CO2 by flowering and non-flowering glumes of the wheat ear, and the pattern of transport of label to individual grains. Australian Journal of Biological Sciences 25(5): 921-930.
Carr D, Wardlaw I. 1965. The supply of photosynthetic assimilates to the grain from the flag leaf and ear of wheat. Aust. J. Biol. Sci 18(71): 1-19.
Chang T-T. 1976. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25(1): 425-441.
Cochrane M, Duffus C. 1979. Morphology and ultrastructure of immature cereal grains in relation to transport. Annals of Botany 44(1): 67-72.
Elbaum R, Zaltzman L, Burgert I, Fratzl P. 2007. The role of wheat awns in the seed dispersal unit. Science 316(5826): 884-886.
Evans L, Wardlaw I, Fischer R 1975. Wheat. In ‘Crop physiology: some case histories’.(Ed. LT Evans) pp. 101–150: Cambridge University Press: London.
Gebbing T, Schnyder H. 1999. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiology 121(3): 871-878.
Gebbing T, Schnyder H. 2001. 13C labeling kinetics of sucrose in glumes indicates significant refixation of respiratory CO2 in the wheat ear. Functional Plant Biology 28(10): 1047-1053.
Hara SR. 1942. Trials heredity of Formosan wild rice. Plant and Animal. 10:321-325.
Holm G. 1954. Chlorophyll mutations in barley. Acta Agriculturae Scandinavica 4(1): 457-471.
Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490(7421): 497-501.
Imai I, Kimball JA, Conway B, Yeater KM, McCouch SR, McClung A. 2013. Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice. Molecular Breeding.
Imaizumi N, Samejima M, Ishihara K. 1997b. Characteristics of photosynthetic carbon metabolism of spikelets in rice. Photosynthesis research 52(2): 75-82.
Imaizumi N, Usuda H, Nakamoto H, Ishihara K. 1990. Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles. Plant and cell physiology 31(6): 835-844.
Ishihara K, Takada A and Imaizumi N. 1991. On the contribution of panicle   
   photosynthesis to grain yield in rice plants. Jpn J Crop Sci 60 (Extra Issue 1):  
   122–123
Jiang Q, Roche D, Durham S, Hole D. 2006. Awn contribution to gas exchanges of barley ears. Photosynthetica 44(4): 536-541.
Kahn A, Avivi-Bleiser N, Von Wettstein D. 1976. Genetic regulation of chlorophyll synthesis analyzed with double mutants in barley. Genetics and biogenesis of chloroplasts and mitochondria. Elsevier, North Holland Biomedical Press, Amsterdam: 119-131.
Kong L, Wang F, Feng B, Li S, Si J, Zhang B. 2010. The structural and photosynthetic characteristics of the exposed peduncle of wheat (Triticum aestivum L.): an important photosynthate source for grain-filling. BMC Plant Biol 10: 141.
Kousaka F, Ueno O, Ishihara K. 1992. Inner fine structure of lemmas and paleae of rice plant in relation to photosynthetic function. Japanese Journal of Crop Science 61: 175.
Kriedemann P. 1966. The photosynthetic activity of the wheat ear. Annals of Botany 30(3): 349-363.
Li X, Wang H, Li H, Zhang L, Teng N, Lin Q, Wang J, Kuang T, Li Z, Li B, Zhang A, Lin J. 2006. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiologia Plantarum 127(4): 701-709.
Lichtenthaler HK. 1987. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in enzymology 148: 350-382.
Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA. 2006. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci U S A 103(25): 9578-9583.
Lu Q, Lu C. 2004. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears. Plant Physiol Biochem 42(5): 395-402.
Maeda E. 1972. Surface structure of unhulled rice observed by scanning electron microscope. Japanese with English abstract). Jpn. J. Crop. Sci 41: 459-471.
Maydup ML, Antonietta M, Guiamet JJ, Graciano C, Lopez JR, Tambussi EA. 2010. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Research 119(1): 48-58.
Maydup ML, Antonietta M, Guiamet JJ, Tambussi EA. 2012. The contribution of green parts of the ear to grain filling in old and modern cultivars of bread wheat (Triticum aestivum L.): Evidence for genetic gains over the past century. Field Crops Research 134: 208-215.
McFeeters RF, Chichester CO, Whitaker JR. 1971. Purification and properties of chlorophyllase from Ailanthus altissima (Tree-of-Heaven). Plant Physiology 47(5): 609-618.
Motzo R, Giunta F. 2002. Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat. Crop and Pasture Science 53(12): 1285-1293.
Nagata K, Fukuta Y, Shimizu H, Yagi T, Terao T. 2002. Quantitative Trait Loci for Sink Size and Ripening Traits in Rice (Oryza sativa L.). Breeding Science 52(4): 259-273.
Nutbeam AR, Duffus CM. 1976. Evidence for C4 photosynthesis in barley pericarp tissue. Biochemical and Biophysical Research Communications 70(4): 1198-1203.
Oka H-I. 1984. Secondary succession of weed communities in lowland habitats of Taiwan in relation to the introduction of wild-rice (Oryza perennis) populations. Vegetatio 56(3): 177-187.
Panozzo J, Eagles H, Cawood R, Wootton M. 1999. Wheat spike temperatures in relation to varying environmental conditions. Crop and Pasture Science 50(6): 997-1006.
Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG. 2004. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101(27): 9971-9975.
Porra R, Thompson W, Kriedemann P. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics 975(3): 384-394.
Rawson H, Evans L. 1970. The pattern of grain growth within the ear of wheat. Australian Journal of Biological Sciences 23(4): 753-764.
Reynolds M, Mujeeb‐Kazia, Sawkins M. 2005. Prospects for utilising plant‐adaptive mechanisms to improve wheat and other crops in drought‐and salinity‐prone environments. Annals of Applied Biology 146(2): 239-259.
Sanchez E, Quesada T, Espinoza AM. 2006. Ultrastructure of the wild rice Oryza grandiglumis (Gramineae) in Costa Rica. Revista de biologia tropical 54(2): 377-385.
Sasahara T. 1981. Studies on structure and function of the rice ear, 1: Fixation of 14C by ear and shoot, and redistribution of 14C-assimilates among organs. Japanese Journal of Crop Science 50.
Singal H, Sheoran I, Singh R. 1986. In vitro enzyme activities and products of 14CO2 assimilation in flag leaf and ear parts of wheat (Triticum aestivum L.). Photosynthesis research 8(2): 113-122.
Spurr AR. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of ultrastructure research 26(1): 31-43.
Strand A, Asami T, Alonso J, Ecker JR, Chory J. 2003. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421(6918): 79-83.
Takahashi N, Alterfa HAH, Sato T. 1986. Significant role of awn in rice [Oryza sativa] plants, 1: A survey of agricultural value of rice awn. Reports of the Institute for Agricultural Research-Tohoku University 35.
Takeda T, Maruta H. 1956. Studies on CO2 exchange in crop plants. IV. Roles played by the various parts of the photosynthetic organs of rice plant in producing grains during ripening period. Jpn. J. Crop Sci 24: 181-184.
Tambussi EA, Bort J, Guiamet JJ, Nogues S, Araus JL. 2007. The Photosynthetic Role of Ears in C3 Cereals: Metabolism, Water Use Efficiency and Contribution to Grain Yield. Critical Reviews in Plant Sciences 26(1): 1-16.
Tambussi EA, Nogues S, Araus JL. 2005. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta 221(3): 446-458.
Tanaka R, Tanaka A. 2007. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58: 321-346.
Terao T, Nagata K, Morino K, Hirose T. 2010. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120(5): 875-893.
Terrell EE, Peterson PM, Wergin WP. 2001. Epidermal features and spikelet micromorphology in Oryza and related genera (Poaceae: Oryzeae). Smithsonian Contributions to Botany(91).
Tsuno Y, Sato Y, Miyamoto H, Harada N 1975. Studies on CO2 uptake and CO2 evolution in each part of crop plants, 2: Photosynthetic activity in the leaf sheath and ear of rice plant. Proceedings of the Crop Science Society of Japan.
Watson PA, Duffus CM. 1988. Carbon dioxide fixation by detached cereal caryopses. Plant Physiology 87(2): 504-509.
Watson PA, Duffus CM. 1991. Light-dependent CO2 retrieval in immature barley caryopses. Journal of experimental botany 42(8): 1013-1019.
Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR. 1998. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150(2): 899-909.
Xu X-L, Zhang Y-H, Wang Z-M. 2004. Effect of heat stress during grain filling on phosphoenolpyruvate carboxylase and ribulose-1, 5-bisphosphate carboxylase/oxygenase activities of various green organs in winter wheat. Photosynthetica 42(2): 317-320.
Yang C-M, Chang K-W, Yin M-H, Huang H-M. 1998. Methods for the determination of the chlorophylls and their derivatives. TAIWANIA-TAIPEI- 43: 116-122.
Yang C-M, HSU J-C, CHEN Y-R. 1995. Analysis of pigment-protein complexes in mungbean testa. Plant physiology and biochemistry 33(2): 135-140.
Yang C-M, Yang M-M, Hsu J-M, Jane W-N. 2003. Herbivorous insect causes deficiency of pigment-protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leaf. Botanical Bulletin of Academia Sinica 44.
Yoshida A, Suzaki T, Tanaka W, Hirano HY. 2009. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci U S A 106(47): 20103-20108.
Zhang Q. 2007. Strategies for developing Green Super Rice. Proc Natl Acad Sci U S A 104(42): 16402-16409.
Zhang ZW, Yuan S, Feng H, Xu F, Cheng J, Shang J, Zhang DW, Lin HH. 2011. Transient accumulation of Mg-protoporphyrin IX regulates expression of PhANGs - New evidence for the signaling role of tetrapyrroles in mature Arabidopsis plants. J Plant Physiol 168(7): 714-721.
Ziegler-Jons A. 1989. Gas-exchange of ears of cereals in response to carbon dioxide and light. Planta 178(2): 164-175.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔