|
Akritas, A., A. Strzebonski, and P. Vigklas, 2008 Improving the perfor- mance of the continued fractions method using new bounds of positive roots. Nonlinear Analysis: Modelling and Control 13: 265–279. Buetow, K., and A. Chakravarti, 1987 Multipoint gene mapping using seri- ation. I. General methods. American Journal of Human Genetics 41: 180–188. Chang, M. N., R. Wu, S. S. Wu, and G. Casella, 2009 Score statistics for mapping quantitative trait loci. Statistical Applications in Genetics and Molecular Biology 8: 1–35. Climer, S., and W. Zhang, 2006 Cut-and-solve: An iterative search strategy for combinatorial optimization problems. Artificial Intelligence 170: 714–738. Collins, G. E., and A. G. Akritas, 1976 Polynomial real root isolation using Descarte’s rule of signs. Proceedings of the third ACM symposium on Symbolic and algebraic computation : 272–275. Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977 Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39: 1–38. Geiringer, H., 1944 On the probability theory of linkage in mendelian heredity. The Annals of Mathematical Statistics 15: 25–57. Hahsler, M., and K. Hornik, 2006 TSP-Infrastructure for the traveling salesperson problem. Haldane, J. B., and C. H. Waddington, 1931 Inbreeding and linkage. Genetics 16: 357–374. Haley, C. S., and S. A. Knott, 1992 A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–324. Hospital, F., C. Dillmann, and A. Melchinger, 1996 A general algorithm to compute multilocus genotype frequencies under various mating systems. Computer Applications in the Biosciences : CABIOS 12: 455–462. Jansen, R. C., 1993 Interval mapping of multiple quantitative trait loci. Genetics 135: 205–211. Kao, C.-H., and M.-H. Zeng, 2009 A study on the mapping of quantitative trait loci in advanced populations derived from two inbred lines. Genetics Research 91: 85–99. Kao, C.-H., and M.-H. Zeng, 2010 An investigation of the power for separating closely linked QTL in experimental populations. Genetics Research 92: 283–294. Kao, C.-H., Z.-B. Zeng, and R. D. Teasdale, 1999 Multiple interval mapping for quantitative trait loci. Genetics 152: 1203–1216. Kover, P. X., W. Valdar, J. Trakalo, N. Scarcelli, I. M. Ehrenreich, et al., 2009 A multiparent advanced generation inter-cross to fine-map quantita- tive traits in Arabidopsis thaliana. PLoS genetics 5: e1000551. Lander, E. S., and D. Botstein, 1989 Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199. Lu, H., J. Romero-Severson, and R. Bernardo, 2002 Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics 105: 622–628. Mott, R., C. J. Talbot, M. G. Turri, A. C. Collins, and J. Flint, 2000 A method for fine mapping quantitative trait loci in outbred animal stocks. Pro- ceedings of the National Academy of Sciences 97: 12649–12654. Phadnis, N., and H. A. Orr, 2009 A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323: 376–379. Rouillier, F., and P. Zimmermann, 2004 Efficient isolation of polynomial’s real roots. Journal of Computational and Applied Mathematics 162: 33–50. Wolfram Research, Inc., 2012 Mathematica Edition: Version 9.0. Wolfram Research, Inc., Champaign, Illinois. Xu, Y., L. Zhu, J. Xiao, N. Huang, and S. R. McCouch, 1997 Chromosomal regions associated with segregation distortion of molecular markers in F2, back- cross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Molecular and General Genetics MGG 253: 535–545. Zeng, Z. B., 1993 Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences 90: 10972–10976. Zeng, Z. B., 1994 Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.
|