跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張仲宇
研究生(外文):Chung-Yu Chang
論文名稱:以總體經驗模態分解法為基礎的心電圖肌電干擾消除演算法
論文名稱(外文):An Approach to Eliminating EMG noise from ECG using Ensemble Empirical Mode Decomposition
指導教授:曹恆偉曹恆偉引用關係
指導教授(外文):Hen-Wai Tsao
口試委員:嚴震東蔡孟利闕志達張帆人
口試日期:2012-10-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:93
中文關鍵詞:心電圖移動平均濾波經驗模態分解法基線漂移肌電干擾移動窗型變異量
外文關鍵詞:ECGBaseline wanderEMGMoving AverageEmpirical Mode DecompositionMoving Variance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
心臟血管疾病長久以來一直位居國人十大死因之第二位。心電圖在心血管疾病的診斷上扮演相當重要的角色,利用心電圖檢測心臟疾病是最為簡便的方式之一,因其具有非侵入式、可即時偵測和容易取得...等優點,因此在臨床上被廣泛使用。傳統心電圖是由醫師以肉眼進行診斷,對於受到雜訊干擾的部分,肉眼可輕易跳過,但隨著遠端無線照護系統的發展,即時監控和心電圖初期診斷便是其中一項重要指標,此時心電圖的初步診斷工作便會由程式取代。由於即時監控需長時間記錄心電圖狀況,傳統醫院所採用之標準十二導程心電圖並不適用,因此多以行動心電圖記錄儀器(如單導或三導程之可攜式心電圖記錄器)做為測量工具,方便病人攜掛於身上。然而,一般由行動心電圖記錄儀器所測量之心電圖波形,容易受到環境、病人的動作等生理因素的干擾而影響記錄結果。常見的雜訊如50/60 Hz市電干擾、肌肉收縮所產生之肌電干擾、呼吸所造成之基線漂移以及運動時電極貼片和皮膚間相對摩擦所產生之移動假影。這些干擾的存在,皆會影響醫師或程式的判讀。因此,心電圖雜訊濾除對於心電圖診斷系統而言是非常重要的前置處理步驟。
  本論文提出一套結合可適性移動平均濾波器和總體經驗模態分解法之訊號處理架構。可適性移動平均濾波器用來進行基線標移的回復,做為偵測及消除肌電干擾之前置處理,基線漂移復原後的訊號經總體經驗模態分解法進行頻帶拆解後,結合QRS偵測演算法,排除QRS對於結果的影響,僅取出受肌電干擾影響的成分進行雜訊估計與消除,再利用移動窗形變異數,標記出訊號曾受到肌電干擾影響的部位並做處理後之訊號評分,供使用者參考。並以互相關函數、均方根誤差百分比和心電圖特徵誤差為性能指標,檢驗經過上述訊號處理後心電圖的品質。由實驗結果初步證實使用本論文所提出之方法可有效壓抑心電圖中基線漂移和肌電干擾且不會對心電圖特徵造成破壞。


Cardiovascular disease has been listed as the second rank of the top ten leading causes of death. Electrocardiogram(ECG) has played an important role and has been widely used clinically because it is a non-invasive, real-time, quick and easy-to-implement technique. Cardiovascular disease was diagnosed traditionally by inspection from doctors. For doctors, ECG noise can be easily ignored by visual inspection. Nevertheless, with the advance of science and technology, remote monitoring and diagnosis have become important processes to automatically detecting cardiovascular disease. However, in holter devices, ECG recordings are often corrupted by artifacts in some real practice, such as 50/60Hz power line interference, muscle contraction induced electromyogram(EMG), movement(or breath) induced baseline wandering or motion artifact. These aforementioned noises might result in misleading ECG detection. Thus, pre-processing of ECG noise is a very important task in such ECG analysis systems.
In this thesis, an effective approach to eliminate baseline wander and EMG noise from ECG based on modified moving average filter and ensemble empirical mode decomposition (EEMD) was proposed. Modified moving average filter is used to eliminate ECG base line drift. It can be viewed as a pre-processing of the EEMD-based EMG reduction method. If data is interfered by EMG noise, EEMD is first used to decompose ECG data into different frequency components. By combination of proper QRS detection algorithms, only noise part will be extracted without affecting QRS complex or other ECG component. Finally, EMG noise can be estimated and removed from original ECG data. Then, by moving variance detection method, EMG positions can be detected and marked as reference to users.
Cross correlation coefficient (Corr-Coef), percentage root-mean-square difference (PRD) and ECG morphology were used to examine the artificial data performance of proposed algorithm. Results showed that proposed de-noising framework successfully eliminate baseline wander and EMG interferences without significantly distorting the ECG waveform.


口試委員會審定書…………………………………………………………………….……………. i
誌謝……………………………………………………………………………………...…………. iii
摘要……………………………………………………………………..…………………...……… v
ABSTRACT………………………………………………………………………………...…….. vii
目錄………………………………………………………………………………...………….…… ix
圖目錄………………………………………………………………………………………..……. xii
表目錄…………………………………………………………………...…………………...…… xvi
1. 第一章 緒論…………………………………………………………………………. 1
1.1 研究動機與目的……………………………………………………….……………….… 1
1.2 文獻回顧………………………………………………………………………………..… 2
1.3 論文組織……………………………………………………………………………..…… 4
2. 第二章 心電圖原理與量測………………………...……………………………………….. 6
2.1 心電圖原理簡介………………………………………………………………………..… 6
2.1.1心電圖基本原理…………………………………………………………………… 6
2.1.2常見心電圖之干擾………………………………………………………………… 7
2.2 心電圖量測與資料收集…………………………………………………………..……… 9
2.2.1心電圖量測………………………………………………………………………… 9
2.2.2所使用之心電圖量測儀器……………………………………………...………… 10
2.2.3心電圖資料庫收集…………………………...…………………………………… 11
2.3性能指標…………………………………………………………………………..……… 13
2.3.1互相關係數……………………………………………………………….……….. 13
2.3.2心電圖特徵之均方根誤差百分比……………………………..……………….. 13
3. 第三章 基準線漂移還原………………………...………………………………….. 14
3.1移動平均濾波器………………………………………………………….………….…… 14
3.2移動平均濾波器應用於基線漂移估計之問題………………..………………………… 15
3.3可適性移動平均濾波器……………………………………….……………………….… 16
3.3.1擴大取樣間距………………………………………………………….…………… 16
3.3.2斜率判別式……………………………………………………………………….… 17
3.3.3延遲補償……………………………………………………………………….....… 18
3.3.4結合第二級移動平均濾波…………………………………….…………………… 21
3.3.5參數選定……………………………………………………………………….…… 24
3.4結合經驗模態分解法於基線漂移之處理…………………….…….…………………… 26
3.4.1經驗模態分解法…..……………………………………………………...………… 26
3.4.2結合可適性移動平均濾波器與EMD於基線漂移之處理……………………….. 32
4. 第四章 心跳偵測……………………….……………….………….……….………..……… 38
4.1 R波偵測…………………………………………………………………….……….…… 38
4.1.1利用可適性移動平均濾波器…..…………………………………………….…… 38
4.1.2利用經驗模態分解法……………..….…………………………………………… 39
4.1.3內插法………………………………..……………………………………………. 42
4.2 P、Q、S和T波偵測……………………………………………………….……….…… 43
5. 第五章 肌電干擾消除……………………………………………………………………..… 46
5.1以總體經驗模態分解法為基礎的肌電干擾消除演算法………..……………………… 46
5.1.1經驗模態分解法之混模問題………………………………...…………………… 46
5.1.2總體經驗模態分解法………………………………………….………………….. 48
5.1.3以EEMD為基礎的肌電干擾消除方法……………………….…………………. 50
5.1.3.1方法一………………………………………………………………..…….. 52
5.1.3.2方法二……………………….………………………………………….….. 57
5.2肌電干擾偵測與標記……………………………………………………………..……… 66
5.2.1肌電干擾偵測……………………………………………………………….…….. 67
5.2.2肌電干擾標記……………………………………………………………….…….. 69
  5.3干擾程度評分……………………………………………………………..……………… 69
5.4所提出干擾消除之最終架構……….……...…………………………………………..… 71
6. 第六章 實驗結果分析………………………...………………………………….. 73
6.1模擬數據處理後之品質…………………………………………………………..……… 73
6.1.1模擬修正基線漂移之結果………………………………………………….…….. 73
6.1.2模擬修正肌電干擾之結果…………………………………………………….….. 76
6.2實際訊號處理後之品質…………………………………………………………..……… 78
6.2.1實際訊號修正基線漂移之結果……………………………………………….….. 79
6.2.2實際訊號修正肌電干擾之結果………………………………………….……….. 82
8. 第七章 結論與展望………………………...………………………………….. 87

參考文獻…………………………………………………………………….…… 89


[1]行政院衛生署,衛生統計資訊網. Available: http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=12336&class_no=440&level_no=4
[2]M. S. Chavan, R. Aggarwala, and M. Uplane, "Interference reduction in ECG using digital FIR filters based on rectangular window," WSEAS transactions on signal processing, vol. 4, pp. 340-349, 2008.
[3]J. Van Alste and T. Schilder, "Removal of base-line wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps," Biomedical Engineering, IEEE Transactions on, pp. 1052-1060, 1985.
[4]S. H. Liu, "Motion Artifact Reduction in Electrocardiogram Using Adaptive Filter," Journal of Medical and Biological Engineering, vol. 31, pp. 67-72, 2011.
[5]J. Glover Jr, "Adaptive noise canceling applied to sinusoidal interferences," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 25, pp. 484-491, 1977.
[6]N. V. Thakor and Y. S. Zhu, "Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection," Biomedical Engineering, IEEE Transactions on, vol. 38, pp. 785-794, 1991.
[7]Z. Donghui, "Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction," in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005, pp. 1212-1215.
[8]H. Taigang, G. Clifford, and L. Tarassanko, "Application of ica in removing artefacts from the ECG," Neural Processing Letters, vol. 10, pp. 1-5, 2004.
[9]R. Sameni, M. B. Shamsollahi, C. Jutten, and M. Babaie-Zadeh, "Filtering noisy ECG signals using the extended kalman filter based on a modified dynamic ECG model," in Computers in Cardiology, 2005, 2005, pp. 1017-1020.
[10]R. Sameni, M. B. Shamsollahi, C. Jutten, and G. D. Clifford, "A nonlinear Bayesian filtering framework for ECG denoising," Biomedical Engineering, IEEE Transactions on, vol. 54, pp. 2172-2185, 2007.
[11]N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903-995, 1998.
[12]Z. D. Zhao and Y. Q. Chen, "A new method for removal of baseline wander and power line interference in ECG signals," 2006, pp. 4342-4347.
[13]P. Na, I. Vai Mang, U. Mai Peng, and h. Pun Sio, "Accurate Removal of Baseline Wander in ECG Using Empirical Mode Decomposition," in Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, 2007. NFSI-ICFBI 2007. Joint Meeting of the 6th International Symposium on, 2007, pp. 177-180.
[14]K. M. Chang, "Arrhythmia ECG noise reduction by ensemble empirical mode decomposition," Sensors, vol. 10, pp. 6063-6080, 2010.
[15]Medical Education – Health Encyclopedia. Available: http://www.medicotips.com/2010/11/long-qt-syndrome-causes-mechanism.html
[16]K. Ng and P. K. Chan, "A CMOS analog front-end IC for portable EEG/ECG monitoring applications," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52, pp. 2335-2347, 2005.
[17]Mauvila ECG Tutorial. Available: http://www.mauvila.com/ECG/ecg_artifact.htm
[18]L. Yan and M. G. Pecht, "Reduction of Skin Stretch Induced Motion Artifacts in Electrocardiogram Monitoring Using Adaptive Filtering," in Engineering in Medicine and Biology Society, 2006. EMBS ''06. 28th Annual International Conference of the IEEE, 2006, pp. 6045-6048.
[19]中華醫學會 – 麻醉學分會. Available: http://www.csaol.cn/bencandy.php?fid=15&id=554
[20]Available: http://cdn.ubergizmo.com/photos/2008/3/myecg-e3-80.jpg
[21]MyECG E3-80 Portable ECG Recorder and Analyzer. Available: http://www.dynadx.com/Holter/brochure.pdf
[22]A. J. Nimunkar and W. J. Tompkins, "EMD-based 60-Hz noise filtering of the ECG," in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 1904-1907.
[23]P. Laguna, R. Jane, and P. Caminal, "Adaptive filtering of ECG baseline wander," in Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE, 1992, pp. 508-509.
[24]WIKIPEDIA Moving Average. Available: http://en.wikipedia.org/wiki/Moving_average
[25]D. Min and L. Shi-Liu, "Removal of Baseline Wander from Dynamic Electrocardiogram Signals," in Image and Signal Processing, 2009. CISP ''09. 2nd International Congress on, 2009, pp. 1-4.
[26]林祥瑋, "利用經驗模態分解法與最小平方法消除心電訊號雜訊," 民國98年6月.
[27]Z. Wu and E. H. NORDEN, "Ensemble empirical mode decomposition: A noise-assisted data analysis method," Advances in Adaptive Data Analysis, vol. 1, pp. 1-41, 2009.
[28]M. G. Frei and I. Osorio, "Intrinsic time-scale decomposition: time–frequency–energy analysis and real-time filtering of non-stationary signals," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 463, pp. 321-342, 2007.
[29]G. Rilling and P. Flandrin, "One or Two Frequencies? The Empirical Mode Decomposition Answers," Signal Processing, IEEE Transactions on, vol. 56, pp. 85-95, 2008.
[30]M. Blanco-Velasco, B. Weng, and K. E. Barner, "ECG signal denoising and baseline wander correction based on the empirical mode decomposition," Computers in Biology and Medicine, vol. 38, p. 1, 2008.
[31]B. U. Kohler, C. Hennig, and R. Orglmeister, "The principles of software QRS detection," Engineering in Medicine and Biology Magazine, IEEE, vol. 21, pp. 42-57, 2002.
[32]Y. C. Yeh and W. J. Wang, "QRS complexes detection for ECG signal: The Difference Operation Method," Computer methods and programs in biomedicine, vol. 91, pp. 245-254, 2008.
[33]J. Gu-Young and Y. Kee-Ho, "Development of ambulatory ECG monitoring device with ST shape classification," in Control, Automation and Systems, 2007. ICCAS ''07. International Conference on, 2007, pp. 1591-1595.
[34]S. Zhao, H. Chao, L. Jingsheng, and M. Q. H. Meng, "An algorithm of ST segment classification and detection," in Automation and Logistics (ICAL), 2010 IEEE International Conference on, 2010, pp. 559-564.
[35]S. C. Bulusu, M. Faezipour, V. Ng, M. Nourani, L. S. Tamil, and S. Banerjee, "Transient ST-segment episode detection for ECG beat classification," in Life Science Systems and Applications Workshop (LiSSA), 2011 IEEE/NIH, 2011, pp. 121-124.
[36]WIKIPEDIA Electrocardiography. Available: http://en.wikipedia.org/wiki/Electrocardiography
[37]P. Raphisak, S. C. Schuckers, and A. de Jongh Curry, "An algorithm for EMG noise detection in large ECG data," in Computers in Cardiology, 2004, 2004, pp. 369-372.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊