(3.238.235.155) 您好!臺灣時間:2021/05/11 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅士展
研究生(外文):Shih-Jan Luo
論文名稱:鍺鈍化層介面抓陷之探討以及矽晶穿孔結構損耗分析
論文名稱(外文):The Investigation of Interface Trap of Ge Based Passivation Layer and the Loss Analysis of Through Silicon Via Structure
指導教授:劉致為
指導教授(外文):Chee Wee Liu
口試委員:張廖貴術張守進林鴻志
口試委員(外文):Kuei-Shu Chang-LiaoShoou-Jinn ChangHorng-Chih Lin
口試日期:2013-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:75
中文關鍵詞:介面抓陷密度電導方法電容遲滯現象矽晶穿孔插入損耗
外文關鍵詞:GermaniumInterface Trap DensityConductance MethodC-V HysteresisThrough Silicon ViaInsertion Loss
相關次數:
  • 被引用被引用:0
  • 點閱點閱:312
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近代半導體工業跟隨著摩爾定律的規則,持續地將元件微縮進化。但傳統的矽金氧半場效電晶體(MOSFETs)技術已經逐漸面對其微縮的極限。為了要持續維持著元件微縮的步調,必須要開發更高載子遷移率(Carrier Mobility)的新材料來取代傳統矽做為元件通道材料,像鍺或是其他三五族材料目前受到相當的矚目,而其中鍺更是被認為能在未來使用於22奈米節點製程以取代矽。然而,鍺元件仍然存在著許多難題需要克服,其中主要的是高介電係數材料(High-k)的製程整合、表面鈍化的處理以及降低源極/汲極的寄生電阻。
論文中,在(100)、(110)以及(111)的鍺基板上利用高速熱氧化法(RTO)來成長二氧化鍺(GeO2)做為鍺與高介電係數材料的介面層(Interfacial Layer),接著使用了低溫原子沉積(ALD)來生長三氧化二鋁(Al2O3)以保護並增進二氧化鍺的品質,可獲得良好的電容特性。由於鍺的能帶寬度較小,其介面抓陷密度(Interface Trap Density)的擷取必須在低溫下使用電導方法(Conductance Method)量測。並且由SRH model可得知不同溫度下介面抓陷反應之能階。量測結果證明在同樣的製程下的表面抓陷密度:(111)<(100)~(110),與成長厚度:(111)<(100)~(110)大約一致,即成長的速率越慢,其表面抓陷密度越小。另外,低等效氧化層厚度(Low EOT)金氧半元件是一直以來半導體產業追求的目標,我們利用較高介電係數的二氧化鋯(ZrO2)成功的將等效氧化層厚度降低至約0.39奈米等級,並比較得知經過遠距電漿處理(Remote Plasma Treatment)製程後之試片可達到較小介面抓陷密度。
為了遵循摩爾定律,不同於將電晶體的尺寸不停的縮小,取而代之的方法主要有從結構上改變成三維結構,例如鰭式場效應電晶體,又或者是將封裝的方式改成三維堆疊,例如矽晶穿孔技術,如此以來便可以在相同的面積上,增加更多的效能。由於3-D的電路整合包含減少接線長度、降低傳輸時間、縮小系統尺寸等優點,因此論文的另一個主軸為矽晶穿孔(TSV)的電路模型。我們利用電磁模擬軟體:高頻結構模擬(High Frequency Structure Simulation)不同參數條件下的矽晶穿孔插入損耗(Insertion Loss)及訊號耦合(Noise coupling)並利用等效電路模型探討、分析。


Recently, semiconductor industry technology has followed the path of scaling trend based on Moore''s Law. But conventional bulk Si MOSFETs is approaching its fundamental scaling limits. For the continuation of the scaling trend, high mobility materials have been comprehensively investigated as channel material for replacing Si, such as Ge or III-V material due to its high intrinsic carrier mobility. Ge has become a promising candidate to be used on 22nm nodes for beyond CMOS technology, because it has high electron and hole mobility on bulk substrate. At the same time, there are several critical issues for Ge device. The primary challenges to achieve high mobility Ge MOSFETs are the high-k integration process, the improvement of n-type dopants activation, reduction of interface trap density, and proper strain configuration.
In this thesis, using rapid thermal oxidation to grow germanium dioxide on (100), (110) and (111) germanium substrates as interfacial layer between substrate and high-k layer, then use atomic layer deposition to grow aluminum oxide to protect and improve the quality of germanium dioxide which has a good C-V performance. Since the smaller band gap of germanium, the extraction of interface trap density has to use low temperature conductance method. By SRH model, the energy level of interface trap at different temperature can be calculated. The interface trap density of samples on different orientation which is under the same process shows that: (111)<(100)~(110), and the thickness: (111) <(100) ~(110) is on the same trend i.e. the slower the growth rate is, the lower interface trap density will be. In addition, the low EOT MOS devices have always been the goal in semiconductor industry, we use ZrO2 which has higher dielectric constant to successfully reduce the EOT of MOS devices to about 0.39 nanometer level, and the interface trap density can be further decreased by remote plasma treatment process.
To follow Moore''s Law, we scaled down the transistor in the past. But there are still some other technologies to solve the problem, one is three-dimensional structure such as finFET, and another is three-dimensional package such as TSV. Using TSV can increase much more performance in an area on a chip. 3-D package contains reducing the wiring length, reducing transmission time, reducing system size and so on. Therefore, another topic in the thesis is TSV circuit model. We use electromagnetic simulation tool:High Frequency Structure Simulation (HFSS) to simulate the insertion loss and the noise transfer function of TSV under different conditions and analyze the results by equivalent circuit model.


Contents
口試委員會審定書 #
致謝 #
Related Publications(相關論文發表) i
摘要 ii
Abstract iv
Contents vi
List of Figures ix
List of Tables xiii
Chapter 1 Introduction
1.1 Background and motivation 1
1.2 Thesis organization 5
Reference 6
Chapter 2 Interface trap characterization of GeO2/Ge and ZrO2/Ge by low temperature conductance method
2.1 Introduction 7
2.2 Theory of conductance method 8
2.3 High mobility channel material : Ge 14
2.4 Characterization of Interface Traps in Ge by Low-Temperature Conductance Technique 16
2.4.1 Sample fabrication: Al/Al2O3/GeO2/p-Ge MISCAPs 16
2.4.2 Sample fabrication: TiN/ZrO2/p-Ge MISCAPs 20
2.4.3 Low-Temperature Conductance Measurements for Full Mapping of Dit 23
2.4.4 Measurement Results and Discussion 25
2.5 Summary 27
Reference 28
Chapter 3 Loss analysis of through silicon via structure
3.1 Introduction 33
3.1.1 Advantages of 3D IC technology over 2D SoC 34
3.1.2 TSV process 38
3.1.3 Problem description 39
3.2 Electromagnetic simulation and equivalent RLC circuit modeling of TSV 40
3.3 Model verification 48
3.3.1 Dielectric loss 48
3.3.2 Metal loss 52
3.4 Summary 53
Reference 54
Chapter 4 Noise Coupling between TSVs
4.1 Introduction 56
4.2 TSV shielding structures for TSV-TSV coupling suppression-p+ guard ring 57
4.3 TSV shielding structures for TSV-TSV coupling suppression-n+/N-well guard ring 67
4.4 Summary 70
Reference 71
Chapter 5 Summary and Future Work
5.1 Summary 72
5.2 Future Works 74
Reference 75


Reference
[1] Kahng, Dawon, and M. M. Atalla. "Silicon-silicon dioxide field induced surface devices." IRE Solid-State Device Research Conference. 1960.
[2] Moore, Gordon E. "Cramming more components onto integrated circuits." Proceedings of the IEEE 86.1 (1998): 82-85.
[3] Peng, C. Y., et al. "Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si." Applied physics letters 90.1 (2007): 12114-12114.
[4] Lee, Minjoo L., and Eugene A. Fitzgerald. "Optimized strained Si/strained Ge dual-channel heterostructures for high mobility P-and N-MOSFETs." Electron Devices Meeting, 2003. IEDM''03 Technical Digest. IEEE International. IEEE, 2003.
[5] Nayfeh, Ammar, et al. "Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si." Electron Device Letters, IEEE 26.5 (2005): 311-313.
[6] Lau, John H. "TSV manufacturing yield and hidden costs for 3D IC integration." Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th. IEEE, 2010.
Reference
[1] D. Kuzum, T. Krishnamohan, A. J. Pethe, A. K. Okyay, Y. Oshima, Y. Sun, J. P.
Mcvittie, P. A. Pianetta, P. C. McIntyre, K. C. Saraswat, “Ge interface engineering with ozone oxidation for low interface state density”, IEEE Elec. Dev. Lett., 29, pp. 328-331, Apr. 2008.
[2] S. Takagi, T. Maeda, N. Taoka, M. Nishizawa, Y. Morita, K. Ikeda, Y. Yamashita,
M. Nishikawa, H. Kumagai, R. Nakane, S. Sugahara, N. Sugiyama, “Gate dielectric formation and MIS interface characterization on Ge”, Microelectronic Engineering, 84, pp. 2314-2319, Sep. 2007.
[3] R. L. Xie, T. H. Phung, W. He, M. B.Yu, C. X. Zhu, “Interface-engineered highmobility high-K/Ge p-MOSFETs with 1nm equivalent oxide thickness”, IEEE
Trans. Elec. Dev., 56, pp. 1330-1337, Jun. 2009.
[4] N. Taoka, M. Harada, Y. Yamashita, T. Yamamoto, N. Sugiyama, Shin-ichi Takagi, “Effects of Si passivation on Ge metal-insulator-semiconductor interface properties and inversion hole mobility”, Appl. Phys. Lett. 92, 113511, Mar. 2008.
[5] B. De Jaeger , R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris and M. Heyns, “Optimization of a thin layer epitaxial Si as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates”, Microelectronic Engineering, 80, pp. 26-29, Jun. 2005.
[6] M. M. Frank, S. J. Koester, M. Copel, J. A. Ott, V. K. Paruchuri, H. Shang,“Hafnium oxide gate dielectrics on sulfur-passivated germanium”, Appl. Phys. Lett., 89, 112905, Sep. 2006.
[7] T. Maeda, M. Nishizawa, Y. Morita, “Role of germanium nitride interfacial layers
in HfO2/germanium nitride/germanium metal-insulator-semiconductor structures”, Appl. Phys. Lett., 90, 072911, Feb. 2007.
[8] S. J. Whang, S. J. Lee, F. Fao, N. Wu, C. X. Zhu, J. S. Pan, L. J. Tang, D. L. Kwong, “Germanium p- & n-MOSFETs fabricated with novel surface passivation
(plasma-PH3 and thin AlN) and TaN/ HfO2 gate stack”, IEDM Tech. Dig., pp. 307-310, 2004.
[9] H. Shang, K-L. Lee, P. Kozlowski, C. D’emic, I. Babich, E. Sikorski, M. Ieong, H.–S. P. Wong, K. Guarini, W. Haensch, “Self-aligned n-channel germanium MOSFETs with a thin Ge oxynitride gate dielectric and tungsten gate”, IEEE Elec. Dev. Lett., 25, pp. 135-138, Mar. 2004.
[10] E. H. Nicollian and J. R. Brews, MOS Physics and Technology, Wiley, New
York, 2003.
[11] K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris,
M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, G. Groeseneken, “On the
correct extraction of interface trap density of MOS devices with high-mobility
semiconductor substrates”, IEEE Trans. Elec. Dev.,55, pp. 547-555, Feb. 2008.
[12] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley,
New York, 2006.
[13] E.M. Vogel, W.K. Henson, C.A. Richter, and J.S. Suehle, “Limitations of Conductance to the Measurement of the Interface State Density of MOS Capacitors with Tunneling Gate Dielectrics,” IEEE Trans. Electron Dev. 47, 601–608, March 2000; T.P. Ma and R.C. Barker, “Surface-State Spectra from Thick-oxide MOS Tunnel Junctions,” Solid-State Electron. 17, 913–929, Sept. 1974.
[14] E.H. Nicollian, A. Goetzberger and A.D. Lopez, “Expedient Method of Obtaining Interface State Properties from MIS Conductance Measurements,” Solid-State Electron. 12, 937–944, Dec. 1969; W. Fahrner and A. Goetzberger, “Energy Dependence of Electrical Properties of Interface States in Si–SiO2 Interfaces,” Appl. Phys. Lett. 17, 16–18, July 1970; H. Deuling, E. Klausmann and A. Goetzberger, “Interface States in Si–SiO2 Interfaces,” Solid-State Electron. 15, 559–571, May 1972; J.R. Brews, “Admittance of an MOS Device with Interface Charge Inhomogeneities,” J. Appl. Phys. 43, 3451–3455, Aug. 1972; P.A. Muls, G.J. DeClerck and R.J. Van Overstraeten “Influence of Interface Charge Inhomogeneities on the Measurement of Surface State Densities in Si–SiO2 Interfaces by Means of the MOS ac Conductance Technique,” Solid-State Electron. 20, 911–922, Nov. 1977 and references therein.
[15] J.J. Simonne, “A Method to Extract Interface State Parameters from the MIS Parallel Conductance Technique,” Solid-State Electron. 16, 121–124, Jan. 1973.
[16] J.R. Brews, “Rapid Interface Parameterization Using a Single MOS Conductance Curve,” Solid-State Electron. 26, 711–716, Aug. 1983; J.M. Noras, “Extraction of Interface State Attributes from MOS Conductance Measurements,” Solid-State Electron. 30, 433–437, April 1987, “Parameter Estimation in MOS Conductance Studies,” Solid-State Electron. 31, 981–987, May 1988.
[17] W.A. Hill and C.C. Coleman, “A Single-Frequency Approximation for Interface-State Density Determination,” Solid-State Electron. 23, 987–993, Sept. 1980.
[18] A. De Dios, E. Cast’an, L. Bail’on, J. Barbolla, M. Lozano, and E. Lora-Tamayo, “Interface State Density Measurement in MOS Structures by Analysis of the Thermally Stimulated Conductance,” Solid-State Electron. 33, 987–992, Aug. 1990.
[19] E. Duval and E. Lheurette, “Characterisation of Charge Trapping at the Si–SiO2 (100) Interface Using High-temperature Conductance Spectroscopy,” Microelectron. Eng. 65, 103–112, Jan. 2003.
[20] H. Haddara and G. Ghibaudo, “Analytical Modeling of Transfer Admittance in Small MOSFETs and Application to Interface State Characterisation,” Solid-State Electron 31, 1077–1082, June 1988.
[21] Prabhakarana, K., et al. "An efficient method for cleaning Ge (100) surface." Surface science 316.1 (1994): L1031-L1033.
[22] Okumura, H., T. Akane, and S. Matsumoto. "Carbon contamination free Ge (100) surface cleaning for MBE." Applied surface science 125.1 (1998): 125-128.
[23] Lu, Z. H. "Air‐stable Cl‐terminated Ge (111)." Applied physics letters 68.4 (1996): 520-522.
[24] Hosoi, Takuji, et al. "Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO/Ge metal-oxide-semiconductor devices." Applied Physics Letters 94 (2009): 202112.
[25] Sasada, Takashi, et al. "Surface orientation dependence of interface properties of GeO/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation." Journal of Applied Physics 106 (2009): 073716.
[26] Lue, Hang-Ting, Chih-Yi Liu, and Tseung-Yuen Tseng. "An improved two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric." Electron Device Letters, IEEE 23.9 (2002): 553-555.
[27] Zhao, Xinyuan, and David Vanderbilt. "Phonons and lattice dielectric properties of zirconia." Physical Review B 65.7 (2002): 075105.
[28] Fischer, Dominik, and Alfred Kersch. "The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles." Applied Physics Letters 92 (2008): 012908.
[29] P. Tsipas, S. N. Volkos, A. Sotiropoulos, S. F. Galata, G. Mavrou, D. Tsoutsou, Y. Panayiotatos, A. Dimoulas, C. Marchiori, and J. Fompeyrine, Appl. Phys. Lett. 93, 082904 (2008).
Reference
[1] Al-Sarawi, Said F., Derek Abbott, and Paul D. Franzon. "A review of 3-D packaging technology." Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on 21.1 (1998): 2-14.
[2] Paul, Clayton R. "Prediction of crosstalk in ribbon cables: Comparison of model predictions and experimental results." Electromagnetic Compatibility, IEEE Transactions on 3 (1978): 394-406.
[3] Xu, Zheng, et al. "Modeling and evaluation for electrical characteristics of through-strata-vias (TSVs) in three-dimensional integration." 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on. IEEE, 2009.
[4] Paul, Clayton R. Applications of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling. Volume I. Multiconductor Transmission Line Theory. Kentucky Univ Lexington Dept of Electrical Engineering, 1976.
[5] Khan, Nauman H., Syed M. Alam, and Soha Hassoun. "Power delivery design for 3-D ICs using different through-silicon via (TSV) technologies." Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 19.4 (2011): 647-658.
[6] Ndip, Ivan, et al. "Modeling and quantification of conventional and coax-TSVs for RF applications." Microelectronics and Packaging Conference, 2009. EMPC 2009. European. IEEE, 2009.
[7] Banerjee, Kaustav, et al. "3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration." Proceedings of the IEEE 89.5 (2001): 602-633.
[8] Xu, Zheng, and Jian-Qiang Lu. "High-speed design and broadband modeling of through-strata-vias (TSVs) in 3D integration." Components, Packaging and Manufacturing Technology, IEEE Transactions on 1.2 (2011): 154-162.
[9] Han, Ki Jin, Madhavan Swaminathan, and Tapobrata Bandyopadhyay. "Electromagnetic modeling of through-silicon via (TSV) interconnections using cylindrical modal basis functions." Advanced Packaging, IEEE Transactions on 33.4 (2010): 804-817.
[10] Ansys/Ansoft Corporations, High Frequency Structure Simulator (HFSS), version 13.0 [Software]. Canonsburg, PA: Ansoft Corp, 2011.
[11] Hall, Stephen H., and Howard L. Heck. Advanced signal integrity for high-speed digital designs. Wiley-IEEE press, 2011.
[12] Cheng, Tai-Yu, et al. "Accuracy-improved through-silicon-via model using conformal mapping technique." Electrical Performance of Electronic Packaging and Systems (EPEPS), 2011 IEEE 20th Conference on. IEEE, 2011.
Reference
[1] Pak, Jun So, Chunghyun Ryu, and Joungho Kim. "Electrical characterization of trough silicon via (TSV) depending on structural and material parameters based on 3D full wave simulation." Electronic Materials and Packaging, 2007. EMAP 2007. International Conference on. IEEE, 2007.
[2] Helmy, Ahmed, and Mohammed Ismail. "The CHIP-a design guide for reducing substrate noise coupling in rf applications." Circuits and Devices Magazine, IEEE 22.5 (2006): 7-21.
[3] Cho, Jonghyun, et al. "Through silicon via (TSV) shielding structures." Electrical Performance of Electronic Packaging and Systems (EPEPS), 2010 IEEE 19th Conference on. IEEE, 2010.
[4] Cho, Jonghyun, et al. "Modeling and analysis of through-silicon via (TSV) noise coupling and suppression using a guard ring." Components, Packaging and Manufacturing Technology, IEEE Transactions on 1.2 (2011): 220-233.
[5] Cho, Jonghyun, et al. "Guard ring effect for through silicon via (TSV) noise coupling reduction." CPMT Symposium Japan, 2010 IEEE. IEEE, 2010.
[6] Kim, Joohee, Jonghyun Cho, and Joungho Kim. "TSV modeling and noise coupling in 3D IC." Electronic System-Integration Technology Conference (ESTC), 2010 3rd. IEEE, 2010.
Reference
[1] Sze, Simon M., and Kwok K. Ng. Physics of semiconductor devices. Wiley. com, 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔