(18.207.253.100) 您好!臺灣時間:2021/05/06 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柳峻琮
研究生(外文):Jyun-Cong Liou
論文名稱:應用於人體脈搏感測之CMOS多層平行板電容式觸覺感測器
論文名稱(外文):CMOS-Based Multiple Parallel Plate Capacitive Tactile Sensors for Human Pulse Sensing Application
指導教授:田維誠
口試委員:呂良鴻郭柏齡呂家榮
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:90
中文關鍵詞:微機電系統互補式金氧半導體製程非侵入式電容式觸覺感測器脈搏壓力感測器
外文關鍵詞:MEMSCMOS processnon-invasivecapacitive tactile sensorpulse pressure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以互補式金氧半導體微機電系統(CMOS MEMS)製程設計電容式觸覺感測器,主要使用TSMC 1P6M 0.18 μm CMOS MEMS製程。特色為一感測結構內含有兩個感測電容,感測器由三個平行電極板與兩個可移動之空氣間隙組成;空氣間隙原先以鋁、鎢填滿,並於後製程中蝕刻除去,鋁金屬層與二氧化矽(SiO2)介電層構成感測器之結構體。感測器依電極幾何形狀主要分為方形以及米字形設計兩種類型,而方形設計依中央支柱尺寸又可細分為260 μm × 260 μm與200 μm × 200 μm。由探針施加壓力於感測器進行往復型之測試,量測所得感測器之上電容靈敏度以米字形設計4.96 fF/ mmHg最高,下電容靈敏度以中央支柱200 μm × 200 μm 之方形設計5.55 fF/ mmHg最高。人體脈搏量測中,量測得橈動脈之脈搏波形與壓力資訊之初步結果,證明具有發展成為非侵入式連續血液脈搏壓力感測器之潛力。

In this research, capacitive tactile sensors based on CMOS MEMS process were developed. Two sensing capacitors were integrated in one sensor structure for tactile sensing. The fabrication of sensor chips was based on the TSMC 1P6M 0.18 μm CMOS MEMS process. To realize two capacitors in one sensor, three parallel electrodes and two tunable air gaps were designed. The air gaps were initially filled with aluminum and tungsten and the metal filling would be removed in the wet etching process. The membrane electrode of the sensor consisted of aluminum and silicon dioxide. According to the geometry of the electrode, sensors were categorized into square-type and star-type designs. Two square-type designs were proposed; one design was with a larger central pillar with an area of 260 μm × 260 μm while the other design was with a smaller central pillar, with an area of 200 μm × 200 μm. The characterization of the sensors was obtained by a custom made testing system. It was measured that the maximum sensitivities of upper and lower capacitors are 4.96 fF/ mmHg for the star-type design and 5.55 fF/ mmHg for the square-type design with the 200 μm × 200 μm central pillar, respectively. In the human pulse measurement, preliminary radial pulse waveforms and blood pressure information were demonstrated successfully. It was demonstrated that our tactile sensors can be used for non-invasive continuous pulse pressure monitoring.

致謝 I
中文摘要 II
ABSTRACT III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 血液壓力測量方式簡介 2
1.3 壓力感測器文獻整理 6
1.4 互補式金氧半導體微機電(CMOS MEMS)製程介紹 15
第二章 感測器原理與設計 17
2.1 電容式感測器原理 17
2.2 多層平行板電容式感測器設計 19
2.3 模擬結果討論 24
2.3.1 中央支柱260 μm × 260 μm方形設計1 26
2.3.2 中央支柱200 μm × 200 μm方形設計2 29
2.3.3 中央支柱200 μm × 200 μm米字形設計3 32
第三章 感測器後製程結果 38
3.1 晶片蝕刻步驟 38
3.2 晶片蝕刻結果 40
3.3 晶片封裝方法 49
第四章 量測系統介紹與量測結果 51
4.1 量測系統介紹 51
4.1.1 機械性質量測 51
4.1.2 電容值量測 53
4.2 LabVIEW控制系統 54
4.2.1 階段式下壓量測 54
4.2.2 自動化脈波式下壓對電容值量測 55
4.2.3 自動化仿人體脈搏式下壓對電容值量測 57
4.2.4 自動化記錄人體脈搏對感測器電容值量測 59
4.3 感測器量測結果與討論 60
4.3.1 感測器彈性勁度量測結果 60
4.3.2 自動化脈波式下壓與電容值量測結果 62
4.3.3 仿人體脈搏式下壓與電容值量測結果 67
4.3.4 往復型壓力量測電容變化量與下壓深度關係 70
4.3.5 電容變化量與壓力關係 73
4.3.6 人體脈搏量測 79
第五章 結論與未來展望 83
5.1 結論 83
5.2 未來展望 87
參考文獻 88

[1]行政院衛生署統計室衛生統計資料, “民國101年死因結果摘要表,” 2013.
[2]“Peripheral arterial line,” MedilinePlus, ( http://www.nlm.nih.gov/medlineplus/ ency/imagepages/19871.htm ), 2006 .
[3]Thomas G. Pickering, John E. Hall, Lawrence J. Appel, Bonita E. Falkner, John Graves, Martha N. Hill, Daniel W. Jones, Theodore Kurtz, Sheldon G. Sheps, Edward J. Roccella, “Recommendations for Blood Pressure Measurement in Humans and Experimental Animals,” Hypertension, Vol. 111, pp. 697-716, 2005.
[4]J. C. Petrie, E. T. O''Brien, W. A. Littler, and M. de Swiet, “Recommendations on Blood Pressure Measurement,” British Medical Journal, Vol. 293, pp. 611-615, 1986.
[5]Yuhei Kawano, Hiroaki Matsuoka, Shuichi Takishita and Teruo Omae, “Effects of Magnesium Supplementation in Hypertensive Patients: Assessment by Office, Home, and Ambulatory Blood Pressures,” Hypertension, Vol. 32, pp. 260-265, 1998.
[6]“Digital Automatic Blood Pressure Monitor Model M3 Instruction Manual,” Omron, 2011.
[7]M. Koen and V. Pascal, “Development and Modelling of Arterial Applanation Tonometry: A Review,” Technology and Health Care, Vol. 10, pp. 65-76, 2002.
[8]G. L. Pressman and P. M. Newgard, “A Transducer for the Continuous External Measurement of Arterial Blood Pressure,” IEEE Transactions on Bio-Medical Electronics, Vol. 10, pp. 73-81, 1963.
[9]Dennis E. Bahr, Krishan K. Dhupar, Jeffrey C. Petzke and Erich T. Ziemann, “A Microprocessor-Based Arterial Tonometer,” 1st Ann Symp Comp Appl Med Care, 1977.
[10]Sung-Pil Chang, Jeong-Bong Lee, Mark G. Allen, “Robust Capacitive Pressure Sensor Array,” Sensors and Actuators A, Vol. 101, pp. 231-238, 2002.
[11]M. Zagnoni, A. Golfarelli, S. Callegari, A. Talamelli, V. Bonorac, E. Sangiorgi, M. Tartagni, “A Non-Invasive Capacitive Sensor Strip for Aerodynamic Pressure Measurement,” Sensors and Actuators A, Vol. 123-124, pp. 240-248, 2005.
[12]Cheng-Ting Ko, Sheng-Hsiang Tseng, Michael S.-C. Lu, “A CMOS Micromachined Capacitive Tactile Sensor with High-Frequency Output,” Journal of Microelectromechanical Systems, Vol. 15, pp. 1708-1714, 2006.
[13]Tomi Salo, Kay-Uwe Kirstein, Tobias Vančura, Henry Baltes, “CMOS-Based Tactile Microsensor for Medical Instrumentation,” IEEE Sensors Journal, Vol. 7, pp. 258-265, 2007.
[14]M. Makihata, S. Tanaka, M. Muroyama, S. Matsuzaki, H. Yamada, T. Nakayama, U. Yamaguchi, K. Mima, Y. Nonomura, M. Fujiyoshi, M. Esashi, “Integration and Packaging Technology of MEMS-on-CMOS Capacitive Tactile Sensor for Robot Application Using Thick BCB Isolation Layer and Backside-Grooved Electrical Connection,” Sensors and Actuators A, Vol. 188, pp. 103-110, 2012.
[15]W. C. Oliver, G. M. Pharr, “Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol. 7, pp 1564-1583, June 1992.
[16]P. M. McGuiggan, J. S. Wallace, D. T. Smith, I. Sridhar, Z. W. Zheng and K. L. Johnson, “Contact Mechanics of Layered Elastic Materials: Experiment and Theory,” Journal of Physics D: Applied Physics, Vol. 40, pp. 5984-5994, 2007.
[17]Kenji Takazawa, Hideyuki Kobayashi, Naohisa Shindo, Nobuhiro Tanaka, Akira Yamashina, “Relationship between Radial and Central Arterial Pulse Wave and Evaluation of Central Aortic Pressure Using the Radial Arterial Pulse Wave,” Hypertension Research, Vol. 30, pp. 219-228, 2007.
[18]Y. R. Wang, J. M. Zheng, G. Y. Ren, P. H. Zhang, C. Xu, “A Flexible Piezoelectric Force Sensor Based on PVDF Fabrics,” Smart Materials and Structures, Vol. 20, 2011.
[19]Chunyan Li, Pei-Ming Wu, Soohyun Lee, Andrew Gorton, Mark J. Schulz, Chong H. Ahn, “Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer,” Journal of Microelectromechanical Systems, Vol. 17, pp. 334-341, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔