|
1. Li, H.W., et al., Nanocontact printing: A route to sub-50-nm-scale chemical and biological patterning. Langmuir, 2003. 19(6): p. 1963-1965.
2. Bouaidat, S., et al., Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications. Lab Chip, 2004. 4(6): p. 632-637.
3. Suzuki, M., et al., Negative dielectrophoretic patterning with different cell types. Biosensors and bioelectronics, 2008. 24(4): p. 1043-1047.
4. Chen, C.S., et al., Geometric control of cell life and death. Science, 1997. 276(5317): p. 1425-1428.
5. Roth, E.A., et al., Inkjet printing for high-throughput cell patterning. Biomaterials, 2004. 25(17): p. 3707-3715.
6. Lee, K.B., et al., Protein nanoarrays generated by dip-pen nanolithography. Science, 2002. 295(5560): p. 1702-1705.
7. Chen, C.S., et al., Cell shape provides global control of focal adhesion assembly. Biochemical and biophysical research communications, 2003. 307(2): p. 355-361.
8. Guilak, F., et al., Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 2009. 5(1): p. 17-26.
9. Bhatia, S.N., M.L. Yarmush, and M. Toner, Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. Journal of biomedical materials research, 1997. 34(2): p. 189-199.
10. Albrecht, D.R., et al., Probing the role of multicellular organization in three-dimensional microenvironments. Nature methods, 2006. 3(5): p. 369-375. 64
11. Fukuda, J., et al., Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials, 2006. 27(8): p. 1479-1486.
12. Camelliti, P., A.D. McCulloch, and P. Kohl, Microstructured cocultures of cardiac myocytes and fibroblasts: a two-dimensional in vitro model of cardiac tissue. Microscopy and Microanalysis, 2005. 11(03): p. 249-259.
13. Zinchenko, Y.S. and R.N. Coger, Engineering micropatterned surfaces for the coculture of hepatocytes and Kupffer cells. Journal of Biomedical Materials Research Part A, 2005. 75(1): p. 242-248.
14. Stenger, D.A., et al., Detection of physiologically active compounds using cell-based biosensors. Trends in Biotechnology, 2001. 19(8): p. 304-309.
15. Pancrazio, J., et al., Development and application of cell-based biosensors. Annals of Biomedical Engineering, 1999. 27(6): p. 697-711.
16. Arnold, M., et al., Cell interactions with hierarchically structured nano-patterned adhesive surfaces. Soft Matter, 2008. 5(1): p. 72-77.
17. Rozkiewicz, D.I., et al., Covalent microcontact printing of proteins for cell patterning. Chemistry-A European Journal, 2006. 12(24): p. 6290-6297.
18. Sanjana, N.E. and S.B. Fuller, A fast flexible ink-jet printing method for patterning dissociated neurons in culture. Journal of neuroscience methods, 2004. 136(2): p. 151-163.
19. Garci-Sanchez, P. and F. Mugele, Fundamentals of Electrowetting and Applications in Microsystems. Electrokinetics and Electrohydrodynamics in Microsystems, 2011: p. 85-125.
20. Fan, S.K., et al., Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip, 2008. 8(8): p. 1325-1331.
21. Prins, M., W. Welters, and J. Weekamp, Fluid control in multichannel structures by electrocapillary pressure. Science, 2001. 291(5502): p. 277-280.
22. Welters, W.J.J. and L.G.J. Fokkink, Fast electrically switchable capillary effects. Langmuir, 1998. 14(7): p. 1535-1538.
23. Kuo, J.S., et al., Electrowetting-induced droplet movement in an immiscible medium. Langmuir, 2003. 19(2): p. 250-255.
24. Satoh, W., M. Loughran, and H. Suzuki, Microfluidic transport based on direct electrowetting. Journal of applied physics, 2004. 96: p. 835.
25. Huh, D., et al., Reversible switching of high-speed air-liquid two-phase flows using electrowetting-assisted flow-pattern change. Journal of the American Chemical Society, 2003. 125(48): p. 14678-14679.
26. Acharya, B.R., et al., Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics. Applied physics letters, 2003. 83: p. 4912.
27. Krupenkin, T., S. Yang, and P. Mach, Tunable liquid microlens. Applied physics letters, 2003. 82: p. 316.
28. Moon, H., S.K. Cho, and R.L. Garrell, Low voltage electrowetting-on-dielectric. Journal of applied physics, 2002. 92: p. 4080.
29. Hayes, R.A. and B. Feenstra, Video-speed electronic paper based on electrowetting. Nature, 2003. 425(6956): p. 383-385.
30. Heikenfeld, J., et al., Recent progress in arrayed electrowetting optics. Optics and Photonics News, 2009. 20(1): p. 20-26.
31. Cho, S.K., H. Moon, and C.J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Microelectromechanical Systems, Journal of, 2003. 12(1): p. 70-80.
32. Batrakova, E.V. and A.V. Kabanov, Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Journal of Controlled Release, 2008. 130(2): p. 98-106.
33. Fan, C.Y., et al., Electrically programmable surfaces for configurable patterning of cells. Advanced Materials, 2008. 20(8): p. 1418-1423.
34. Lhoest, J.B., et al., A new plasma-based method to promote cell adhesion on micrometric tracks on polystyrene substrates. Journal of Biomaterials Science, Polymer Edition, 1996. 7(12): p. 1039-1054.
35. Dewez, J.L., et al., Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns. Biomaterials, 1998. 19(16): p. 1441-1445.
36. 鍾尚倫, 微奈米生物分子塗布技術之研發, 臺灣大學電子工程學研究所學位論文, 2011(2011年).
37. Kim, L., et al., A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip, 2007. 7(6): p. 681-694.
38. Fan, C.Y., K. Kurabayashi, and E. Meyhofer, Protein pattern assembly by active control of a triblock copolymer monolayer. Nano letters, 2006. 6(12): p. 2763-2767.
|