(34.226.234.102) 您好!臺灣時間:2021/05/12 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳宗銘
研究生(外文):Zong-Ming Wu
論文名稱:邊緣窄化結構對砷化銦/砷化鎵量子點紅外線偵測器之特性影響
論文名稱(外文):The effect of edge thinning structure on the performance of InAs/GaAs Quantum dot infrared photodetectors
指導教授:李嗣涔李嗣涔引用關係
口試委員:管傑雄林時彥湯相峰
口試日期:2013-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:136
中文關鍵詞:砷化銦砷化鎵量子點紅外線偵測器邊緣窄化
外文關鍵詞:InAsGaAsQuantum dotinfrared photodetectoredge thinning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來,提升量子點紅外線偵測器操作溫度的方法吸引了很多人的關注。實驗已經證明了,以降低元件的暗電流,可提昇量子點紅外線偵測器的特性。然而,由於決定暗電流的主要因子仍然是不明確的,因此藉由降低暗電流來提升元件操作溫度的效果是有限的。本論文的第一個主題,針對暗電流的決定因子完成了系統性的研究,分別製作不同面積大小的元件,比較暗電流在元件大小之間的差異。顯示暗電流與元件大小並無顯著的關聯性。既然降低暗電流的效果不佳,因此提升光電流的想法被提出。接著第二個主題,在傳統的砷化銦/砷化鎵量子點紅外線偵測器中加入砷化銦鎵作為載子補充層,發現元件響應有巨大的提昇。藉由實驗與理論模型詳細地探究載子傳輸的物理機制。最後一個主題,基於前一個主題的成功,透過邊緣窄化結構提升元件的操作溫度。在量子點層做結構,重現了降低暗電流的效果,也清楚地觀察到縮減寬度與操作溫度的正相關性。雖然如此,此種結構亦會降低光電流,導致元件響應並不如預期。在這個主題中,得到了操作溫度為250 K的元件。

Recently, the methods of promoting the operation temperature have attracted much attention. Experimental evidences have demonstrated that QDIPs exhibit improved properties by lowering the dark current. However, the main factors that determine the dark current are still unclear; leading to the effect is limited. It was proven that raising the photocurrent can enhance the responsivity and hence the operation temperature is elevated. First, exploring the dark current mainly dominated by bulks or surfaces of the devices was studied. Second, the improvement of InAs/GaAs QDIPs using the new structure, well-in-dot structure, was investigated. The InGaAs quantum well layer can provide free carriers to fill InAs QDs and enhances the responsivity. By analyzing experimental results and theoretical model, carrier dynamics have been established to explain the operation principle of WD-QDIPs. Third, another way to enhance the characteristics of QDIPs is edge thinning structure, resulting in the reduction of the dark current. High operation temperature can be achieved with large edge thinning width.

Figure Captions VI
List of Tables XI
Chapter 1 Introduction 1
Chapter 2 The Concepts of Infrared Detectors and Experimental Techniques 6
2.1 Theory 6
2.1.1 Thermal Radiation 6
2.1.2 Infrared Detectors 8
2.1.3 Quantum Dot Infrared Photodetectors 12
2.2 Process Flow 15
2.2.1 Device Fabrication Process 15
2.2.2 Lift-off Process 19
2.3 Device Characterizations 21
2.3.1 I-V Characteristics Measurement 21
2.3.2 Fourier Transform Infrared Spectroscopy 21
2.3.3 Relative spectral response 25
2.3.4 Absolute responsivity 27
2.3.5 Specific Detectivity 30
Chapter 3 The Main Factors that Determine The Dark Current 31
3.1 Experiments 32
3.2 Results and Discussion 34
3.2.1 Spectral response of QDIPs with different sizes 34
3.2.2 I-V characteristics of QDIPs with different sizes 43
Chapter 4 An Improved InAs/GaAs QDIP Using Well-in-Dot Structure 53
4.1 The operation principle of the well-in-dot QDIPs 54
4.1.1 Experiments 55
4.1.2 Results and Discussion 59
4.1.2.1 Spectral response of QDIPs with different number of the quantum well layers 59
4.1.2.2 I-V characteristics of QDIPs with different number of the quantum well layers 66
4.2 Improved performance of WD-QDIPs using edge thinning technique 93
4.2.1 The fundamentals of Edge Thinning 94
4.2.2 Experiments 97
4.2.3 Results and Discussion 102
4.2.3.1 Spectral response of QDIPs with different edge thinning widths 102
4.2.3.2 I-V characteristics of QDIPs with different edge thinning widths 116
Chapter 5 Conclusions 129
Bibliography 131


[1]L. J. Jiang, E. Y. K. Ng, A. C. B. Yeo, S. Wu, F. Pan, W. Y. Yau, J. H. Chen, and Y. Yang, Journal of Med. Engine. & Techno. 29, 257 (2005)
[2]Z. Huang, A. Mcwilliams, H. Lui, D. I. Mclean, S. Lam and H. Zeng, Int. J. Cancer 107, 1047 (2003)
[3]P. J. Pinter, M. E. Staghellini, R. J. Reginato, A. D. Jenkins and R. D. Jackson, Science 205, 585 (1979)
[4]M. Niedre, M. S. Patterson and B. C. Wilson, Photochemistry and Photobiology 75, 382 (2002)
[5]E. C. Tuazon, A. M. Winer, R. A. Graham, J. P. Schmid and J. N. Pitts, Environmental Science & Technology 12, 954 (1978)
[6]M. Ogawa, T. Togawa, "1 Annual International EEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology " 12-14 (2000)
[7]J. M. KAHN AND J. R. BARRY, Wireless Infrared Communications 85, 265 (1997)
[8]R. A. Ballingall, Proc. of SPIE, 1320, 70 (1990)
[9]A. Rogalski, Opto-Elect. Rev. 12, 2, 221 (2004)
[10]K. K. Choi., The Physics of Quantum Well Infrared Photodetectors The Physics of Quantum Well Infrared Photodetectors, World Scientific Publishing Co. Pte. Ltd (1997)
[11]P. Martyniuk, A. Rogalski, Prog. Quant. Elect. 32, 89 (2008)
[12]H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, J. Appl. Phys. 93, 2931 (2003)
[13]S. Y. Lin, W. H. Lin, C. C. Tseng, K. P. Chao, and S. C. Mai, Appl. Phys. Lett. 95, 123504 (2009)
[14]J. Vaillancourt, A. Stintz, M. J. Meisner, X. LuInfrared, Physics & Technology 52, 22( 2009)
[15]S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, Appl. Phys. Lett. 78, 1023 (2001)
[16]A. D. Stiff, S. Krishna, P. Bhattacharya, S. W. Kennerly, IEEE J. Quant. Electro. 37, 1412 (2001)
[17]S. F. Tang, S. Y. Lin and S. C. Lee, Appl. Phys. Lett. 78, 2428(2001)
[18]P. Bhattacharya, X. H. Su, and S. Chakrabarti, G. Ariyawansa and A. G. U. Perera, Appl. Phys. Lett. 86, 191106 (2005)
[19]X. H. Su, S. Chakrabarti, A. D. Stiff-Roberts, J. Singh and P. Bhattacharya, Electronics Letters 40, 17 (2004)
[20]J. Shao, T. E. Vandervelde, A. Barve, W. Y. Jang, A. Stintz, and S. Krishna, J. Vac. Sci. Technol. B29, 03C123-1(2011)
[21]J. H. Lee, W. C. Liang, Z. M. Wu, and S. C. Lee, Appl. Phys. Lett. (unpublished)
[22]P. Klenovsky,V. Křapek, D. Munzar, and J. Humliček, Appl. Phys. Lett. 97, 203107 (2010)
[23]K. Y. Ban, S. P. Bremner, G. Liu, S. N. Dahal, P. C. Dippo, A. G. Norman, and C. B. Honsberg, Appl. Phys. Lett. 96, 183101 (2010)
[24]A. Rogalski, Prog. Quant. Elect. 27, 59 (2003)
[25]F. J. Low, J. Opt. Soc. Amer. 51, 1300 (1961)
[26]J. Schieferdecker, R. Quad, E. Holzenkampfer and M. Schulze, Sensors and Actuators 46, 422 (1995)
[27]N. Fujitsuka, J. Sakata, Y. Miyachi, K. Mizuno, K. Ohtsuka, Y. Taga, O. Tabata, Sensors and Actuators 66, 237 (1998)
[28]L. H. Kidder, I. W. Levin, E. N. Lewis, V. D. Kleiman and E. J. Heilweil, Optics Letters 22, 742 (1997)
[29]A. Rogalski, Infrared Phys. Technol. 35, 1 (1994)
[30]Y. X. Zhang and F. 0. Williamson, Applied Optics 21, 2036 (1982)
[31]J. Baars, Optical Mater 6, 41 (1996)
[32]J. Phillips, K. Kamath and P. Bhattacharya, Appl. Phys. Lett. 72, 2020 (1998)
[33]V Ryzhii, Semicond. Sci. Technol. 11, 759 (1996)
[34]A Rogalski, Journal of Physics: Conference Series 146, 012030(2009)
[35]M. Henini and M. Razeghi, Handbook of Infrared Detection Technologies, ELSEVIER press (2002) (ISBN: 978-1856173889)
[36]A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005)
[37]S. C. Shen, Semicond. Sci. Technol. 8, S443(1993)
[38]V. Ryzhii, J. Appl. Phys. 81, 6442 (1997)
[39]C. J. Chen, K. K. Choi, M. Z. Tidrow and D. C. Tsui, Appl. Phys. Lett. 68, 1446 (1996)
[40]H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard , Appl. Phys. Lett. 78, 79 (2001)
[41]P. Martyniuk and A. Rogalski, Proc. of SPIE. 6940, 694004 (2008)
[42]J.C. Campbell and A. Madhukar, Proc. of IEEE. 95(9), 1815 (2007)
[43]B. F. Levine, C. G. Bethea, G. Hasnain, V. O. Shen, E. Pelve, R. R. Abbott, and S. J. Hsieh, Appl. Phys. Lett.56, 851 (1990)
[44]J. Yao, C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, Appl. Phys. Lett. 72, 453 (1998)
[45]Amlan Majumdar, K. K. Choi, J. L. Reno, L. P.Rokhinson, and D. C. Tsui, Appl. Phys. Lett. 80, 707 (2002)
[46]W. A. Beck, Appl. Phys. Lett. 63, 3589 (1993)
[47]H. C. Liu, Appl. Phys. Lett. 61, 2703 (1992)
[48]K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Bohm, G. Trankle, and G. Weimann, J. Phys. (Paris) Colloq. C5-3, 107 (1993).
[49]T. Fukui, S. Ando, Y. Kokura, and T. Toriyama, Appl. Phys. Lett. 58, 2018 (1991).
[50]Y. Nagamune, S. Tsukamoto, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 64, 2495 (1994).
[51]M. Grundmann, J. Christen, N. N. Ledentsov, J. Bohrer, D.Bimberg, S.S.Ruvimov, P. Werner, U. Richter, U. Gosele, J. Heydenreich, V. M. Ustinov, A. Yu.Egorov, P. S. Kop’ev, and Zh. I. Alferov, Phys. Rev. Lett. 74, 4043 (1995).
[52]C. T. Huang, and S. C. Lee, ‘’The effect of adding GaAsSb strain reducing layer on the performance of InAs/GaAs Quantum dot infrared photodetectors’’, Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science, National Taiwan University, Doctoral Dissertation.
[53]D. D. Coon, R. P. G. Karunasiri, and L. Z. Liu, Appl. Phys. Lett. 47, 289 (1985).
[54]K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett. 50, 1814 (1987).
[55]P. Y. Lai, and S. C. Lee, ‘’Passivation of Quantum Dot Infrared Photodetector with Al2O3 Deposited by Atomic Layer Deposition’’, Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science, National Taiwan University, Master Thesis.
[56]Z. Y. Zhang, B. Xu, P. Jin, X. Q. Meng, Ch. M. Li, X. L. Ye, and Z. G. Wang, J. Appl. Phys. Lett. 92, 511 (2002)
[57]A. J. Williamson, L. W. Wang, and A. Zunger, Phys. Rev. B62, 12963 (2000)
[58]H. Jiang and J. Singh, Phys. Rev. B56, 4696 (1997)
[59]S. S. Li, J. B. Xia, Z. L. Yuan, Z. Y. Xu, G. Weikun, X. R. Wang, Y. Wang, J. Wang, and L. L. Chang, Phys. Rev. B54, 11575 (1996)
[60]M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B52, 11969 (1995)
[61]C. Y. Chang, and S. C. Lee, ‘’Enhancement of Operation Temperature of Quantum Dot Infrared Photodetectors by Edge Thinning Structure’’, Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science, National Taiwan University, Master Thesis.
[62]H. H. Lin, and S. C. Lee, Appl. Phys. Lett. 47 (8) (1985).
[63]Y. H. Wu, J. S. Su, W. C. Hsu, W. Lin, W. C. Liu, M. J. Kao, and R. T. Hsu, Jpn. J. Appl. Phys. 34, 5908 (1995).
[64]S. Fu, T. P. Chen, R. C. Liu, S. Y. Cheng, P. H. Lai, Y. Y. Tsai, C. W. Hung, and W. C. Liu, Journal of The Electrochemical Society, 154 (9) H289 (2007).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔