(3.235.191.87) 您好!臺灣時間:2021/05/14 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡偉毅
研究生(外文):Wei-Yi Hu
論文名稱:具有自我偵測與自動校正能力的0.18微米CMOS射頻EDR藍芽收發機
論文名稱(外文):A 0.18μm CMOS RF Transceiver with Self-Detection and Auto-Calibration Functions for Bluetooth plus EDR Application
指導教授:陳少傑陳少傑引用關係
指導教授(外文):Sao-Jie Chen
口試委員:呂學士劉深淵林宗賢徐碩鴻黃柏鈞
口試委員(外文):Shey-Shi LuShen-Iuan LiuTsung-Hsien LinShuo-Hung HsuPo-Chiun Huang
口試日期:2013-07-05
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:129
中文關鍵詞:無線高頻收發機自我偵測自動校正可程式增益控制藍芽
外文關鍵詞:RF TransceiverSelf-DetectionAuto-CalibrationPGARSSIBluetooth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藍芽通訊已經成為被廣泛應用的通訊協定,其傳輸資料的前段部分採用GFSK的調變技術來達到訊號認證的功用,本研究因應藍芽通訊的發展,以藍芽+EDR為研究對象,完成本研究的驗證,本研究乃實現一無線高頻前端收發機,來接受與發送藍芽技術的訊號,利用電路本身之自我訊號偵測與自動增益校正的功能,來偵測調變訊號並達到自動增益調整的目的,而不需要額外基頻數位控制的電路。
本研究發展之無線收發機,內部包含GFSK訊號偵測機制,低雜訊放大器的增益控制,以及整合型PGA與RSSI的自動增益校正機制。本研究最後以FPGA實現藍芽技術之實體層與此無線收發機結合測試,其發送端的DEVM測試為小於6%,接收端的系統NF為小於7.5dB。功耗的表現上,在1.8V內部的供給電壓以及連續訊號的測試下,發送端為42mA,接收端為32mA。


An RF front-end transceiver is implemented in standard 0.18μm CMOS for V3.0 Bluetooth applications. All signal detection and gain calibrations are realized without baseband’s control and just using an incoming GFSK signal detection mechanism, auto LNA gain mode selection, and auto gain calibration with a combined PGA/RSSI function. A simple control interface between transceiver and baseband is achieved in this design. The DEVM performance of the transmitter is less than 6% and a less than 7.5dB system NF is achieved in the receiver. Continuous current consumptions in Rx and Tx are 32mA and 42mA respectively with a 1.8V internal regulator voltage.

ABSTRACT i
TABLE OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLE xiii
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Overview of Bluetooth + EDR Specification 2
1.2.1 Bluetooth Packet Format 4
1.2.2 Receiver Specification 4
1.2.3 Transmitter Specification 7
1.3 Contributions of the Dissertation 9
1.4 Dissertation Organization 10
1.5 Work Assignment of Bluetooth Transceiver and Acknowledgement 10
CHAPTER 2 RF TRANSCEIVER ARCHITECTURE OVERVIEW 13
2.1 Receiver Architecture 13
2.1.1 Direct-Conversion Receiver 13
2.1.2 Low-IF Receiver 17
2.2 Transmitter Architecture 17
2.2.1 Direct-Conversion Transmitter 18
2.2.2 Two-Step Transmitter 21
2.3 Basic RF Design Concepts 23
2.3.1 Conversion Gain 24
2.3.2 1dB Compression Point 24
2.3.3 Third Order Interception Point 25
2.3.4 Port Return Loss and Isolation 29
2.3.5 Carrier and Sideband Suppression 30
CHAPTER 3 BLUETOOTH+EDR RF SYSTEM PLANNING 33
3.1 System Link Budget and Sub-circuit Specification 33
3.1.1 Cascaded Noise Factor and Noise Figure 33
3.1.2 Cascaded Nonlinearity 34
3.1.3 System Sensitivity 35
3.1.4 System Link Budget of the Proposed RF Transceiver 36
3.1.5 Phase Noise of PLL Synthesizer 39
3.2 Matlab System Verification 42
3.2.1 Matlab Transmitter Verification 43
3.2.2 Matlab Receiver Verification 45
CHAPTER 4 BLUETOOTH+EDR RF TRANSCEIVER DESIGN 49
4.1 Proposed RF Transceiver Architecture 49
4.2 RF Receiver Design 51
4.2.1 Low Noise Amplifier 52
4.2.2 gm-C Based LC Ladder Complex Band-pass Filter 58
4.2.3 Limiter/Programmable Gain Amplifier/Receiver Signal Strength Indicator 69
4.3 RF Transmitter Design 72
4.3.1 Low Pass Filter 73
4.3.2 Up-conversion Mixer 73
4.3.3 Power Amplifier 79
4.3.4 DC Offset Cancellation 85
4.4 PLL Synthesizer Design 86
CHAPTER 5 BLUETOOTH SIGNAL DETECTION AND GAIN
CALIBRATION FUNCTION DESIGN 91
5.1 Calibration and Detection Procedures 91
5.2 Auto Incoming GFSK Signal Detection 93
5.3 Auto Receiver Gain Calibration 97
5.3.1 LNA Gain Calibration 98
5.3.2 IF-path Gain Calibration 100
CHAPTER 6 RF TRANSCEIVER MEASUREMENT 103
6.1 Measurement Plan 103
6.1.1 Receiver Measurement Plan 104
6.1.2 Transmitter Measurement Plan 105
6.2 Measurement Environment Setup 106
6.2.1 Receiver Measurement Environment Setup 106
6.2.2 Transmitter Measurement Environment Setup 107
6.3 Measurement Results 108
6.3.1 Low Noise Amplifier and Power Amplifier 108
6.3.2 Complex Band-Pass Filter and Low-Pass Filter 110
6.3.3 Phase Locked Loop Synthesizer 112
6.3.4 Programmable Gain Amplifier and Received Signal Strength Indicator 114
6.3.5 GFSK Signal Detection and Receiver Gain Calibration 115
6.3.6 Constellation 117
6.3.7 Interference Performance 119
CHAPTER 7 CONCLUSION AND FUTURE WORK 121
7.1 Conclusion 121
7.2 Future Work 123
REFERENCE 125

[1]David Weber, William W. Si, Shahram Abdollahi-Alibeik, MeeLan Lee, Richard Chang, Hakan Dogan, Susan Luschas, and Paul Husted, “A Single-Chip CMOS Radio SoC for v2.1 Bluetooth Applications,” IEEE Internal Solid-State Circuits Conference, Dig. Tech. Papers, pp. 364-365, Feb. 2008.
[2]B. Marholev, M. Pan, E. Chien, L. Zhang, R. Roufoogaran, S. Wu, I. Bhatti, T.-H. Lin, M. Kappes, S. Khorram, S. Anand, A. Zolfaghari, J. Castaneda, C.M. Chien, B. Ibrahim, H. Jensen, H. Kim, P. Lettieri, S. Mak, J. Lin, Y.C. Wong, R. Lee, M. Syed, M. Rofougaran, and A. Rofougaran, “A Single-Chip Bluetooth EDR Device in 0.13μm CMOS,” IEEE Internal Solid-State Circuits Conferenc ,Dig. Tech. Papers, pp. 558-559, Feb. 2007.
[3]Jeonghun Kim, Youngwhan Choi, Jungwon Jeong, Suhho Lee, and Suki Kim, “The v2.0+EDR Bluetooth SOC Architecture for Multimedia,” IEEE Transactions on Consumer Electronics, Vol. 52, No. 2, pp. 436-444, May 2006.
[4]William W. Si, David Weber, Shahram Abdollahi-Alibeik, MeeLan Lee, Richard Chang, Hakan Dogan, Haitao Gan, Yashar Rajavi, Susan Luschas, Soner Ozgur, Paul Husted, and Masoud Zargari, “A Single-Chip CMOS Bluetooth v2.1 Radio SoC,” IEEE Journal of Solid-State Circuits, Vol. 43, No. 12, pp. 2896-2904, Dec. 2008.
[5]Sam Chun-Geik Tan, Fei Song, Renliang Zheng, Jiqing Cui, Guoqin Yao, Litian Tang, Yuejin Yang, Dandan Guo, Alexander Tanzil, Junmin Cao, Ming Kong, Knantiong Wong, Chee-Lee Heng, Osama Shana’a, and GK Dehng, “An Ultra-low-cost Bluetooth SOC in 0.11-μm CMOS,” IEEE International Asian Solid-State Circuits Conference, pp. 365-368, Nov. 2011
[6]Sam Chun-Geik Tan, Fei Song, Renliang Zheng, Jiqing Cui, Guoqin Yao, Litian Tang, Yuejin Yang, Dandan Guo, Alexander Tanzil, Junmin Cao, Ming Kong, Knantiong Wong, Soong Lin Chew, Chee-Lee Heng, Osama Shana’a, and Guang-Kaai Dehng, “An Ultra-Low-Cost High-Performance Bluetooth SOC in 0.11-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 47, No. 11, pp. 2665-2677, Nov. 2012
[7]Yeon-Jae Jung, Hoesam Jeong, Eunseok Song, Jungho Lee, Seung-Wook Lee, Donghyeon Seo, Inho Song, Sanghun Jung, Joonbae Park, Deog-Kyoon Jeong, Soo-Ik Chae, and Kim Wonchan, “A 2.4-GHz 0.25-μm CMOS dual-mode direct-conversion transceiver for Bluetooth and 802.11b,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 7, pp. 1185-1190, Jul. 2004
[8]T.B. Cho, D. Kang, C.H. Heng, and B.S. Song, “A 2.4-GHz dual-mode 0.18-μm CMOS transceiver for Bluetooth and 802.11b,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 11, pp. 1916-1926, Nov. 2004
[9]Ahmed A. Emira, Alberto Valdes-Garcia, Bo Xia, Ahmed N. Mohieldin, Ari Y. Valero-Lopez, Sung T. Moon, Chunyu Xin, and Edgar Sanchez-Sinencio, “Chameleon: A Dual-Mode 802.11b/Bluetooth Receiver System Design,” IEEE Transactions on Circuits and System I: Regular Paper, Vol. 53, No. 5, pp. 992-1003, May 2006
[10]P.B. Leong, D. Cheung, N. Kumar, L. Lin, S. Tan, H. Wang, S. Wang, S.K. Chan, G. Chien, T. Cho, Y.H. Song, and L. Tse, “World’s First 90nm CMOS Single-Chip Bluetooth and WLAN with Integrated RF,” IEEE International Symposium on Integrated Circuits, pp. 337-340, Sep. 2007
[11]Zhou Tao, “A 2.4GHz Dual-Mode CMOS Transceiver for Bluetooth and 802.11b,” IEEE International Conference on Integration Technology, pp. 465-469, Mar. 2007
[12]Dong-Ho Kim, Dongsu Kim, Jun-Chul Kim, Jong-Chul Park, and Chong-Dae Park, “A Novel Integrated Dual-mode RF Front-end module for Wi-Fi and Bluetooth Applications,” IEEE International Microwave Symposium Digest, pp. 1-4, Jun. 2011
[13]Hooman Darabi, Shahla Khorram, Hung-Ming (Ed) Chien, Meng-An Pan Stephen Wu, Shervin Moloudi, John C. Leete, Jacob J. Rael, Masood Syed, Robert Lee, Brima Ibrahim, Maryam Rofougaran, and Ahmadreza Rofougaran, “A 2.4-GHz CMOS Transceiver for Bluetooth,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 12, pp. 2016-2024, Dec. 2001.
[14]Alireza Zolfaghari and Behzad Razavi, “A Low-Power 2.4-GHz Transmitter/Receiver CMOS IC,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 2, pp. 176-183, Feb. 2003.
[15]Larry B. Li, Zhizhong Huang, Yang Jiao, Xiaoyan Zheng, and Shuqi Wang, “Low Power RF Transceiver Design for Bluetooth Applications,” IEEE International Conference on Solid-State and Integrated-Circuit Technology, pp. 1552-1555, Oct. 2008
[16]Trung-Kien Nguyen, Vladimir Krizhanovskii, Jeongseon Lee, Seok-Kyun Han, Sang-Gug Lee, Nae-Soo Kim, and Cheol-Sig Pyo, “A Low-Power RF Direct-Conversion Receiver/Transmitter for 2.4-GHz-Band IEEE 802.15.4 Standard in 0.18-μm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 12, pp. 4062-4071, Dec. 2006.
[17]Hiroki Ishikuro, Mototsugu Hamada, Ken-ichi Agawa, Shouhei Kousai, Hiroyuki Kobayashi, Duc Minh Nguyen, and Fumitoshi Hatori, “A Single-Chip CMOS Bluetooth Transceiver with 1.5MHz IF and Direct Modulation Transmitter,” IEEE Internal Solid-State Circuits Conference, Section 5, Paper 5.5, Feb. 2003.
[18]Waleed F. Aboueldahab and Khaled M. Sharaf, “A 1.2V Low Power CMOS Receiver for Bluetooth,” IEEE International Conference on Solid-State and Integrated-Circuit Technology, pp. 1577-1580, Oct. 2008
[19]Wei-Yi Hu, Jia-Wei Lin, Kuo-Chi Tien, Yong-Hsiang Hsieh, Chao-Liang Chen, Hung-Ta Tso, Yi-Shun Shih, Shao-Chueh Hu, and Sao-Jie Chen, “An RF transceiver with Auto Signal Detection and Combined PGA/RSSI in 0.18μm CMOS for V2.1 Bluetooth applications,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 109-113, 2009.
[20]Wei-Yi Hu, Jia-Wei Lin, Kuo-Chi Tien, Yong-Hsiang Hsieh, Chao-Liang Chen, Hung-Ta Tso, Yi-Shun Shih, Shao-Chueh Hu, and Sao-Jie Chen, “A 0.18-μm CMOS RF Transceiver With Self-Detection and Calibration Functions for Bluetooth V2.1 + EDR Applications,” IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 5, pp. 1367-1374, May 2010.
[21]Bluetooth Special Interest Group, “Specification of The Bluetooth System, Covered Core Package version 4.0,” in Part A: Radio Specification, Specification Volume 2, Jun. 2010.
[22]B. Razavi, RF Microelectronics, Prentice Hall PTR, Upper Saddle River, NJ, 1998.
[23]Andrea Zanella, Michele Zorzi, “Throughput and Energy Efficiency of Bluetooth v2 + EDR in Fading Channels,” IEEE Wireless Communications and Networking Conference (WCNC), pp. 1661-1666, Mar.-Apr. 2008.
[24]Behzad Razavi, “A Study of Phase Noise in CMOS Oscillators,” IEEE Journal of Solid-State Circuit, Vol. 31, No. 3, pp. 331-343, Mar. 1996.
[25]Bram Nauta, “A CMOS Transconductance-C Filter Technique for Very High Frequencies,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 2, pp. 142-153, Feb. 1992.
[26]Paul van Zeijl, Jan-Wim Th. Eikenbroek, and Peter-Paul Vervoort, Suma Setty, Jurjen Tangenberg, Gary Shipton, Eric Kooistra, Ids C. Keekstra, Didier Belot, Klaas Visser, Erwin Bosma, and Stephan C. Blaakmeer, “A Bluetooth Radio in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 37, No. 12, pp. 1679-1687, Dec. 2002.
[27]Iqbal Bhatti, Razieh Roufoogaran, and Jesus Castaneda, “A Fully Integrated Transformer-Based Front-End Architecture for Wireless Transceivers,” IEEE Internal Solid-State Circuits Conference, Dig. Tech. Paper, pp. 106-107, Feb. 2005.
[28]R. Chang, D. Weber, M. Lee, D. Su, K. Vleugels, and S. Wong, “A fully integrated RF front-end with independent RX/TX matching and +20 dBm output power for WLAN applications,” IEEE Internal Solid-State Circuits Conference, Dig. Tech. Papers, pp. 564-565, Feb. 2007.
[29]Po-Chiun Huang, Yi-Huei Chen, and Chorng-Kuang Wang, “A 2-V 10.7-MHz CMOS limiting amplifier/RSSI,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 10, pp. 1474-1480, Oct. 2000
[30]Hong-Sun Kim, M. Ismail, and H. Olsson, “CMOS limiters with RSSIs for Bluetooth receivers,” IEEE Midwest Symposium on Circuits and Systems, Vol. 2, pp. 812-815, Aug. 2001
[31]Chun-Pang Wu and Hen-Wai Tsao, “A 110-MHz 84-dB CMOS programmable Gain Amplifier With Integrated RSSI Function,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 6, pp. 1249-1258, Jun. 2005.
[32]Keping Wang, Jiangmin Gu, Kok Meng Lim, Jinna Yan, Wei Meng Lim, Xiang Cao, Zhigong Wang, Kaixue Ma, and Kiat Seng Yeo, “A CMOS Low-Power Receiving Signal Strength Indicator using Weak-Inversion Limiting Amplifiers,” IEEE International Conference on Electron Devices and Solid-State Circuits, pp. 1-2, Nov. 2011
[33]Sangjin Byun, Chan-Hong Park, Yongchul Song, Sungho Wang, Cormac S.G. Conroy, and Beomsup Kim, “A Low-Power CMOS Bluetooth RF Transceiver With a Digital Offset Canceling DLL-Based GFSK Demodulator,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 10, pp. 1609-1618, Oct. 2003.
[34]M.H. Perrott, T. L. Tewksbury III, and C.G. Sodini, “A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation,” IEEE Journal of Solid-State Circuits, Vol. 32, No. 12, pp. 2048-2060, Dec. 1997.
[35]Shuenn-Yuh Lee, Chung-Han Cheng, Ming-Feng Huang, and Shyh-Chyang Lee, “A 1-V 2.4-GHz low-power fractional-N frequency synthesizer with sigma-delta modulator controller,” IEEE international symposium on Circuits and Systems, Vol. 3, pp. 2811-2814, May 2005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top