(3.236.118.225) 您好!臺灣時間:2021/05/16 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:湯宗盛
研究生(外文):Tsung-Sheng Tang
論文名稱:具降低峰均值功率比預先編碼多通道系統之遞迴解碼
論文名稱(外文):Iterative Decoding of Precoded Multichannel System with PAPR Reduction
指導教授:蘇炫榮
口試委員:葉丙成蘇柏青
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:43
中文關鍵詞:峰均值功率比預先編碼多通道遞迴解碼列舉球面解碼
外文關鍵詞:PAPRprecodemultichanneliterative decodelist sphere decode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In a multichannel system, the transmitter can perform precoding techniques to overcome the sub-channel interference. However, the precoding transformation matrix usually results in high peak to average power ratio (PAPR). In order to avoid inefficiently operating the power amplifier, for a precoded multi-input multi-output (MIMO) system, we consider the system with the PAPR reduction method based on integer reversible mapping which does not introduce redundancy or requires any control signaling. Nevertheless, the conventional decoding for the precoded system cannot be directly applied to our system model, otherwise a significant performance loss in bit error rate incurs. Therefore, we propose a decoding mechanism which uses the list sphere decoding and extracts the soft information for iterative detection and decoding. A noticeable improvement on the error performance is shown in simulations.

1 Introduction-1

2 PAPR Reduction for Precoded Multichannel System-4
2.1 PAPR Reduction Method Based on Integer Reversible Matrix Mapping-4
2.1.1 Approximately Cubic Shaping via Integer Reversible Matrix Mapping-5
2.1.2 Encoding and Decoding of PLUS-7
2.2 Precoded Multichannel System-10

3 Precoded PLUS MIMO System-12
3.1 System Model-12
3.2 PAPR Reduction in Precoded PLUS MIMO System-16
3.3 Proposed Decoding Mechanism with Maximum-Likelihood Detection-18

4 Iterative Detection and Decoding-21
4.1 Iterative Decoding of Precoded PLUS MIMO System-21
4.2 Proposed Decoding Mechanism with List Sphere Decoder-28

5 Simulation Results-33
5.1 Performance of Maximum-Likelihood Detection-33
5.2 Performance of Iterative Decoding-35

6 Conclusion and Future Work-39

Bibliography-41

[1] C.-P. Lee and H.-J. Su, "Peak to average power ratio reduction of spacetime codes that achieve diversity-multiplexing gain tradeoff," Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on, pp. 1-6, 15-18 Sept. 2008.
[2] M. Damen and H. El Gamal, "On maximum-likelihood detection and the search for the closest lattice point," IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2389-2402, Oct. 2003.
[3] P. Dayal and M. Varanasi, "Maximal diversity algebraic space-time codes with low peak-to-mean power ratio," IEEE Trans. Inform. Theory, vol. 51, no. 5, pp. 1691-1708, May 2005.
[4] P. Hao and Q. Shi, "Matrix factorizations for reversible integer mapping," IEEE Trans. Signal Processing, vol. 49, no. 10, pp. 2314-2324, Oct. 2001.
[5] Y. Song and S. D. Blostein, "Channel estimation and data detection for mimo systems under spatially and temporally colored interference," EURASIP Journal on Applied Signal Processing, 2004, pp. 685-695, Jan. 2004.
[6] A. Scaglione, P. Stoica, S. Barbarossa, G. Giannakis, and H.Sampath, "Optimal designs for space-time linear precoders and decoders," IEEE Trans. Signal Processing, vol. 50, no. 5, pp. 1051-1064, May 2002.
[7] F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo, "Perfect space-time block codes," Submitted to IEEE Trans. Inform. Theory, 2006.
[8] B. Hochwald and S. ten Brink, "Achieving near-capacity on a multipleantenna channel," IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399, Mar. 2003.
[9] S. Baro, J. Hagenauer, and M. Witzke, "Iterative detection of MIMO transmission using a list sequential (LISS) detector," in Proc. IEEE Int. Conf. Communications, Anchorage, AK, May 2003.
[10] J. Boutros, N. Gresset, L. Brunel, and M. Fossorier, "Soft-input softoutput lattice sphere decoder for linear channels," in Proc. of the IEEE GLOBECOM03, pp. 1583-1587, 2003.
[11] H. Vikalo and B. Hassibi, "Iterative decoding for MIMO channels via modified sphere decoder," IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2299-2311, Nov. 2004.
[12] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. Hoboken, NJ: John Wiley and Sons Inc., 2005.
[13] L. Zheng and D. Tse, "Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels," IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1073-1096, May 2003.
[14] L. M. Garth, P. J. Smith, and M. Shafi, "Exact symbol error probabilities for SVD transmission of BPSK data over fading channels," in Proceedings of IEEE ICC,
pp. 2271-2276, May 2005.
[15] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding," IEEE Trans. Inform. Theory, pp. 909-926, May 1998.
[16] X. Li and J. A. Ritcey, "Bit-interleaved coded modulation with iterative decoding," in Proc. Int. Conf. Communications, pp. 858-862, June 1999.
[17] J. Hagenauer, E. Offer and L. Papke, "Iterative decoding of binary block and convolutional codes," IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429-445, Mar. 1996

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top