(3.236.222.124) 您好!臺灣時間:2021/05/08 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭詠守
研究生(外文):Yung-Shou Cheng
論文名稱:高效能背板互連系統之眼圖預測與等化器設計
論文名稱(外文):Eye-Diagram Determination and Equalization Techniques for High-Performance Backplane Interconnect System
指導教授:吳瑞北
口試委員:李源良林建民郭維德吳宗霖王蒼容薛光華楊成發林丁丙
口試日期:2013-07-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:112
中文關鍵詞:清潔環背板焊墊連續時間線性等化器眼圖有限脈衝響應濾波器符際干擾損耗材質多重反射信號完整度步階響應連通柱連通柱殘段
外文關鍵詞:Anti-padbackplanecontact padcontinuous-time linear equalizer(CTLE)eye diagramFIR filterinter-symbol interference(ISI)lossy materialmultiple reflectionssignal integritystep responsethrough-hole viavia stub.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:822
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高速背板互連系統中,因互連線的非理想效應而造成的符際干擾,會引發嚴重的信號完整性問題。本論文提出新穎的等化技術和最佳化方法,以補償通道的非理想效應,使其接近理想而消除符際干擾。
首先,根據系統步階響應而開發的快速眼圖預測演算法,可以快速評估高速數位電路的接收端信號品質,正確計算最差情況下的邏輯1和邏輯0電壓值,進而推導出相對應的解析解。接著,介紹如何從步階響應推得組成最差情況眼圖的相對應位元組合,以及利用數個範例來驗證此方法的準確性。
其次,在通訊晶片中會採用有限脈衝響應濾波器作為發射器預加重電路,保持接收端信號有良好的信號完整度,為了得到最佳的係數設計及最佳的眼圖優化,本論文提出新穎的直接眼圖最佳化演算法,設定眼圖遮罩為最佳化的目標函數,為了能更為快速且有效尋找出最佳的參數設定,引入上述的快速眼圖預測演算法,加速眼圖計算模擬的程序,結果顯示此方法將會比起傳統採方式快上數十倍,實驗結果也驗證了此最佳化方法的效果。
接著,提出一種被動式有限脈衝濾波器設計,利用額外插入的殘段所產生的反射信號實現2階的被動式有限脈衝濾波器電路。推導出擬合成的係數和相關的設計參數 (RT, RS, Zh) 之間的關係式,從而建立一通用的設計圖表,使得容易實現此被動式有限脈衝濾波器設計,另外此被動解決方案具有減少功耗並達到有效改善眼圖的好處。
最後在高效能背板互連系統設計上,本論文提出接地面鏤空結構和膠囊型清潔環信號的信號完整度佈線設計,以及一新穎的連續時間線性等化器設計,當資料傳輸率從現在使用的 3 Gb/s 提升到 12 Gb/s,在長 117.5 公分 SATA-II I/O 序列連線的應用上,模擬與測量結果顯示在眼高和時間抖動上,展現了顯著的改善,恢復已被關閉的眼圖。


This dissertation focuses on the developments of fast eye-diagram analyses and equalization techniques for solving the signal-integrity problems caused by the inter-symbol interference (ISI) in the high-performance backplane interconnect system.
In the beginning, a worst-case eye-diagram analysis which relates to the step response of the transmission-line system is presented to quickly and accurately evaluate the electrical performance for the general interconnect systems. With the help of the prediction approach, the bounded voltage margins for the worst-case logic 1-state and 0-state are derived analytically. In addition to introducing how to obtain the worst-case bit patterns form the given step response, several examples are shown to demonstrate the accuracy of the developed approach.
Secondly based on the finite-impulse response (FIR) filter as the transmitter pre-emphasis, a new design algorithm to directly optimize the eye diagram is proposed to counteract ISI in the high-speed data transmission. It is found that not only the frequency-dependent loss but also the multiple reflections due to impedance mismatch contribute much to ISI. Therefore, a systematic method is proposed to efficiently design FIR filters for the best eye-diagram improvement. The optimal sets of tap coefficients and numbers are thus determined by the direct eye-diagram optimization according to the target eye-masks as the objective function. Subsequently, the equalization results for counteracting the multiple reflections and lossy material problems are given to demonstrate the remarkable mitigation of ISI effects. Experimental results are also presented to validate the efficiency of the proposed method for the elimination of the ISI problems due to the multiple reflections and frequency-dependent loss.
Furthermore, a passive FIR filter design is proposed to realize the de-emphasis function by taking the advantage of reflections under the additional inserting stub. The relations between the synthesized tap coefficients and the corresponding design parameters (RT, RS, Zh) are derived analytically and thus a universal design chart is well established to facilitate the passive FIR filter design. The passive solution has the advantages of reducing the power consumption of the transmitters and achieving the eye-diagram improvement efficiently.
Finally, the systematic integration of signal-integrity aware layouts and the new continuous-time linear equalizer (CTLE) are proposed for enhancing the high-performance backplane interconnects system. First, the SI-aware layouts of patterned ground structure and capsule-shaped anti-pad are presented to enhance the connector performance. In addition, a new differential CTLE by taking the advantage of differential via-stubs is proposed to restore the eye-diagram deterioration in serial I/O links. Their application for a 117.5-cm SATA-II link demonstrates the significant improvement in the eye height and timing jitter. Furthermore, a viable approach is suggested to successfully re-open the eyes while the data rate increases from the current 3 Gb/s to 12 Gb/s. The measurement results are also provided to validate the proposed design concepts.


口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Literature Survey 4
1.3 Contributions 7
1.4 Organization of the Dissertation 8
Chapter 2 Worst-Case Eye-Diagram Determination 11
2.1 Eye-Diagram Principle and Key Metrics 11
2.2 Fast Eye-Diagram Analysis Based on Step Response 13
2.2.1 Linear Time-Invariant System 14
2.2.2 Pulse Response and Peak Distortion Analysis 15
2.2.3 Worst-Case Analysis Based on Step Response 20
2.3 Worst-Case Bit Pattern and Examples 28
Chapter 3 Direct Eye-Diagram Optimization Using FIR Equalizer 37
3.1 Flow Chart of Optimal FIR Filter Design 38
3.2 Design Examples 44
3.2.1 Equalization for Under-Driven Line 45
3.2.2 Equalization for Over-Driven Line 47
3.2.3 Equalization for Lossy Line 50
3.3 Experiment Verifications 53
Chapter 4 Passive FIR Equalizer Design and Validation 59
4.1 Introduction to Passive FIR Equalizer Design 59
4.2 The Determination of Design Parameters 60
4.3 Design Example 66
Chapter 5 SI-Aware Layouts and New Equalizer Design 71
5.1 Introduction to the Backplane System 71
5.2 SI-Aware Via and Contact Pad Layouts 73
5.2.1 Patterned Ground Structure for Contact Pads 73
5.2.2 PTH via design with capsule-shaped anti-pad 80
5.3 Novel Passive Equalizer Design and Its Performance 87
5.4 System Performance Enhancement 91
5.5 Experiment Verifications 94
5.5.1 Patterned Ground Structure for Contact Pads 94
5.5.2 Capsule-Shaped Anti-Pad PTH Vias 95
5.5.3 New Equalizer Design Using Reflections from Via Stubs 97
Chapter 6 Conclusions and Future Works 101
6.1 Conclusions 101
6.2 Future Works 103
REFERENCES 105
PUBLICATION LIST 111

[1]PCI Express Base 3.0 Specification, PCI-SIG Standard, Nov. 10, 2010. [Online]. Available: http://www.pcisig.com/specifications/pciexpress/base3
[2]Serial ATA 3.0 Specification, SATA-IO Standard, May 27, 2009. [Online]. Available: http://www.serialata.org
[3]Thunderbolt™ Technology, Intel Corporation. June 28, 2011. [Online]. Available: http://www.intel.com/content/www/us/en/io/thunderbolt/thunderbolt-technology-developer.html
[4]Clayton R. Paul, Introduction to Electromagnetic Compatibility, 2nd Edition, John Wiley Interscience, Hoboken, New Jersey, 2006, Ch. 3.
[5]W. Humann, “Compensation of transmission line loss for Gbit/s test on ATEs,” in Proc. IEEE Int. Test Conf., Baltimore, Maryland, USA, Oct. 8–10, 2002, pp. 430–437.
[6]S. Baek, B. C. Park, D. G. Kam, and J. Kim, “Over GHz frequency model of commercial 2mm hard metric connector using on-board calibration standards,” in Proc. Electron. Packag. Tech. Conf., Singapore, Dec. 10–12, 2002, pp. 189–193.
[7]M. Mondal, B. Mutnury, P. Patel, S. Connor, B. Archambeault, and M. Cases, “Electrical analysis of multi-board PCB systems with differential signaling considering non-ideal common ground connections,” in Proc. IEEE 16th Electrical Performance Electron. Packag., Atlanta, Georgia, USA, Oct. 19–-31, 2007, pp. 37–40.
[8]Y.-W. Kim, J.-H. Kim, H.-W. Yang, O.-K. Kwon, C. Ryu, and B.-Y. Min, “A new via hole structure of MLB (Multi-layered printed circuit board) for RF and high speed systems,” in Proc. Electron. Compon. Technol. Conf., Lake Buena Vista, Florida, USA, May 31–June 3, 2005, pp.1378–1382.
[9]B. Wu and L. Tsang, “Signal integrity analysis of package and printed circuit board with multiple vias in substrate of layered dielectrics,” IEEE Trans. Adv. Packag., vol. 33, no. 2, pp. 510–516, May 2010.
[10]H.-H. Chuang, W.-D. Guo, Y.-H. Lin, H.-S. Chen, Y.-C. Lu, Y.-S. Cheng, M.-Z. Hong, C.-H. Yu, W.-C. Cheng, Y.-P. Chou, C.-J. Chang, J. Ku, T.-L. Wu, and R.-B. Wu, “Signal/power integrity modeling of high-speed memory modules using chip-package-board coanalysis,” IEEE Trans. Electromagn. Compat., vol. 52, no. 2, pp. 381–391, May 2010.
[11]S. H. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs. Wiley-IEEE Press, New Jersey, 2009, Ch. 12, pp. 499–500.
[12]S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices, John Wiley & Sons, Inc., 2000, Ch. 2–6.
[13]V. Stojanovic and M. Horowitz, “Modeling and analysis of high-speed links,” in Proc. IEEE Custom Integrated Circuits Conf., San Jose, California, USA, Sept. 21–24, 2003, pp. 589–594.
[14]W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-chip (MPSoC) technology,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 27, no. 10, pp. 1701–1713, Oct. 2008.
[15]S. Gondi, J. Lee, D. Takeuchi, and B. Razavi, “A 10Gb/s CMOS adaptive equalizer for backplane applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, San Francisco, California, USA, Feb. 6–10, 2005, vol. 1, pp. 328–601.
[16]J. Liu and X. Lin, “Equalization in high-speed communication systems,” IEEE Circuits Syst. Mag., vol. 4, no. 2, pp. 4–17, Q2 2004.
[17]W. J. Dally and J. Poulton, “Transmitter equalization for 4-Gbps signaling,” IEEE Micro, vol. 17, no. 1, pp. 48–56, Jan./Feb. 1997.
[18]R. Farjad-Rad, C.-K. K. Yang, M. A. Horowitz, and T. H. Lee, “A 0.4-μm CMOS 10-Gb/s 4-PAM pre-emphasis serial link transmitter,” IEEE J. Solid-State Circuits, vol. 34, pp. 580–585, May 1999.
[19]Y. Kudoh, M. Fukaishi, and M. Mizuno, “A 0.13-μm CMOS 5-Gb/s 10-m 28 AWG cable transceiver with no-feedback-loop continuous-time post-equalizer,” IEEE J. Solid-state Circuits, vol. 38, no. 5, pp. 741–746, May 2003.
[20]D. N. de Araujo, J. Diepenbrock, M. Cases, and N. Pham, “Transmitter and channel equalization for high-speed server interconnects,” in Proc. IEEE 12th Electrical Performance Electron. Packag., Princeton, New Jersey, USA, Oct. 27–29, 2003, pp. 221–224.
[21]H. W. Johnson, “High-speed backplane connectors,” in IEEE Int. Symp. Electromagn. Compat., Long Beach, California, USA, Aug. 14–19, 2011, pp. 612–618.
[22]S. Han, J. Kim, and D. P. Neikirk, “Impact of pad de-embedding on the extraction of interconnect parameters,” in Proc. IEEE Conf. Microelectron. Test Struct., Austin, Texas, USA, Mar. 6–9, 2006, pp. 76–81.
[23]M. Pajovic, J. Yu, and D. Milojkovic, “Analysis of via capacitance in arbitrary multilayer PCBs,” IEEE Trans. Electromagn. Compat., vol. 49, no. 3, pp. 722–726, Aug. 2007.
[24]J. G. Proakis, Digital Communications, 3rd Ed., McGraw-Hill, Singapore, 1995, pp. 602–603.
[25]B. K. Casper, M. Haycock, and R. Mooney, “An accurate and efficient analysis method for multi-Gb/s chip-to-chip signaling schemes,” in IEEE Symp. Very Large Scale Integrated Circuits, Honolulu, Hawaii, USA, Jun. 13–15, 2002, pp. 54–57.
[26]Z. Chen, “Predictions of the worst-case crosstalk including ISI effect and the worst-case eye opening including crosstalk effect for electronic packaging system design,” in Proc. IEEE 16th Electrical Performance Electron. Packag., Atlanta, Georgia, USA, Oct. 29–31, 2007, pp. 159–162.
[27]D. Oh, “Multiple edge responses for fast and accurate system simulations,” in Proc. IEEE 15th Electrical Performance Electron. Packag., Scottsdale, Arizona, USA, Oct. 23–25, 2006, pp. 163–166.
[28]J. Ren and K. S. Oh, “Multiple edge responses for fast and accurate system simulations,” IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 741–748, Nov. 2008.
[29]C.-C. Chou, H.-H. Chuang, T.-L. Wu, S.-H. Weng, and C.-K. Cheng, “Eye prediction of digital driver with power distribution network noise,” in Proc. IEEE 21th Electrical Performance Electron. Packag., Tempe, Arizona, USA, Oct. 21–24, 2012, pp. 131–134.
[30]W.-D. Guo, J.-H. Lin, C.-M. Lin, T.-W. Huang, and R.-B. Wu, “Fast methodology for determining eye-diagram characteristics of lossy transmission lines,” IEEE Trans. Adv. Packag., vol. 32, no.1, pp. 175–183, Feb. 2009.
[31]B. Analui, J. Buckwalter, and A. Hajimiri, “Estimating data-dependent jitter of a general LTI system from step response,” in IEEE Int. Microwave Symp. Digest, Long Beach, California, USA, Jun. 12–17, 2005, pp. 1841–1844.
[32]J. Buckwalter, B. Analui, and A. Hajimiri, “Data-dependent jitter and crosstalk-induced bounded uncorrelated jitter in copper interconnects,” in IEEE Int. Microwave Symp. Digest, Fort Worth, Texas, USA, Jun. 6–11, 2004, vol. 3, pp. 1627–1630.
[33]J. F. Buckwalter, “Predicting microwave digital signal integrity,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 280–289, May 2009.
[34]W. Yu, R. Shi, and C.-K. Cheng, “Accurate eye diagram prediction based on step response and its application to low-power equalizer design,” IEICE Trans. Electron., vol. E92-C, no. 4, pp. 444–452, Apr. 2009.
[35]R. Shi, W. Yu, Y. Zhu, C.-K. Cheng, and E. S. Kuh, “Efficient and accurate eye diagram prediction for high speed signaling,” in Proc. IEEE Int. Conf. Comput.-Aided Des., San Jose, California, USA, Nov. 10–13, 2008, pp. 655–661.
[36]A. Fiedler, R . Mactaggart, J. Welch, and S. Krishnan, “A 1.0625Gbps transceiver with 2x-oversampling and transmit signal pre-emphasis,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, San Francisco, California, USA, Feb. 4–8, 1997, pp. 238–239 and p. 464.
[37]M. Li, S. Wang, Y. Tao, and T. Kwasniewski, “FIR filter optimization as pre-emphasis of high-speed backplane data transmission,” Electron. Lett., vol. 40, no. 14, pp. 912–913, Jul. 2004.
[38]S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE, vol. 73, no. 9, pp. 1349–1387, Sept. 1985.
[39]A. Turudic, S. McKinney, V. Dmitriev-Zdorov , V. Duperron, and K. Stoke, “Pre-emphasis and equalization parameter optimization with fast, worst-case/multibillion-bit verification,” in IEC DesignCon, Santa Clara, California, USA, Jan. 29–Feb 1, 2007.
[40]D. Quint and K. Bois, “Frequency domain analysis of the multi-tap driver in high speed links,” in Proc. IEEE 14th Electrical Performance Electron. Packag., Austin, Texas, USA, Oct. 24-26, 2005, pp. 135–138.
[41]J. Kim, J. Lee, E. Song, J. Jo, and J. Kim, “Compensation of undesired channel effects by frequency domain optimization of pre-emphasis filter for over Gbps signaling,” in IEEE Int. Symp. Electromagn. Compat., Portland, Oregon, USA, Aug. 14–18, 2006, vol. 3, pp. 721–726.
[42]K.-H. Nam, E.-K. Koh, E.-J. Hong, S.-H. Park, J.-Y. Lee, I.-G. Kwak, W. Nah, “Pad shape effects on high frequency signal transfer characteristics,” in Proc. IEEE Int. Symp. Electrical Design Adv. Packag. Syst., Seoul, Korea, Dec. 10–12, 2008, pp. 117–119.
[43]W.-D. Guo, W.-N. Chine, C.-L. Wang, G.-H. Shiue, and R.-B. Wu, “Design of wideband impedance matching for through-hole via transition using ellipse-shaped anti-pad,” in Proc. IEEE 15th Electrical Performance Electron. Packag., Scottadale, Arizona, USA, Oct. 23–25, 2006, pp. 245– 248.
[44]T. Kushta, K. Narita, T. Kaneko, T. Saeki, and H. Tohya, “Resonance stub effect in a transition from a through via hole to a stripline in multilayer PCBs,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 13, no. 5, pp. 169–171, May 2003.
[45]S. Deng, J. Mao, T. H. Hubing, J. L. Drewniak, J. Fan, J. L. Knighten, N. W. Smith, R. Alexander, and C. Wang, “Effects of open stubs associated with plated through-hole vias in backpanel designs,” in IEEE Int. Symp. Electromagn. Compat., Minneapolis, Minnesota, USA, Aug. 9–13, 2004, pp. 1017–1022.
[46]D.-Y. Kim, J. Byun, S.-H. Lee, S.-J. Oh, K.-S. Kang, and H.-Y. Lee, “Signal integrity improvements of a MEMS probe card using back-drilling and equalizing techniques,” IEEE Trans. Instrum. Meas., vol. 60, no. 3, pp. 872–879, Mar. 2011.
[47]S.-H. Joo, D.-Y. Kim, S.-H. Lee, S.-J. Oh, K.-S. Kang, and H.-Y. Lee, “Resistively-terminated via-stubs for signal integrity improvement in the semiconductor test board,” in 2007 Korea-Japan Microwave Conf., Okinawa, Japan, Nov. 15–16, 2007, pp. 121–124.
[48]L. Simonovich, “Stub termination,” EDN Magazine, pp. 19, May 13, 2010. [Online]. Available:
http://m.eet.com/media/1154122/25360-stub_termination_pdf.pdf
[49]W.-D. Guo, F.-N. Tsai, G.-H. Shiue, and R.-B. Wu, “Reflection enhanced compensation of lossy traces for best eye-diagram improvement using high- impedance mismatch,” IEEE Trans. Adv. Packag., vol. 31, no. 3, pp. 619-626, Aug. 2008.
[50]E. Song, J. Kim, J. Kim, and J. Cho, “A compact, low-cost, and wide-band passive equalizer design using multi-layer PCB parasitics,” in Proc. IEEE 19th Electrical Performance Electron. Packag. Syst., Austin, Texas, USA, Oct. 25–27, 2010, pp. 165–168.
[51]N. Ou, T. Farahmand, A. Kuo, S. Tabatabaei, and A. Ivanov, “Jitter models for the design and test of Gbps-speed serial interconnects,” IEEE Des. Test. Comput., vol. 21, no. 4, pp. 302–313, Jul.–Aug. 2004.
[52]G. Breed, “Analyzing signals using the eye diagram,” High Frequency Electronics, vol. 4, no. 11, pp. 50–52, Nov. 2005.
[53]S. H. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs. Wiley-IEEE Press, New Jersey, 2009, Ch. 13, pp. 549–551.
[54]S. H. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs. Wiley-IEEE Press, New Jersey, 2009, Ch. 13, pp. 585–594.
[55]Genetic Algorithm and Direct Search Ttoolbox, v2.3, MATLAB R2008a ed., The MathWorks, Inc. [Online]. Available: http://www.mathworks.com
[56]Arbitrary Waveform Generators AWG7000B Series, Tektronix, Inc. [Online]. Available: http://www.tek.com
[57]Y. Shim, W. Lee, E. Song, J. Cho, and J. Kim, “A compact and wide-band passive equalizer design using a stub with defected ground structure for high speed data transmission,” IEEE Microwave Wireless Comp. Lett., vol. 20, no.5, pp. 256–258, May 2010.
[58]Computer Hard Drives, Dec. 24, 2009. [Online]. Available:
http://it.flexinet.com.au/Bits%20and%20Pieces/HARDDRIVES.htm
[59]PCB Mounted Connectors, IMS Connector Systems. [Online]. Available:
http://www.imscs.com/pcb-mounted-connectors.html
[60]Electromagnetics, Circuit & Systems Solutions, Ansys, Inc. [Online]. Available:
http://www.ansys.com/Products/Simulation+Technology/Electromagnetics.
[61]http://psearch.murata.com/inductor/product/LQP02TN20NH02%23.html
[62]3.2Gbps 2 Differential Channel Serial Re-driver with Equalization, De-emphasis and Squelch, Oct. 3, 2007, Pericom Semiconductor Corp. [Online]. Available: http://www.pericom.com/assets/Datasheets/PI2EQX3201B.pdf


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔