(3.236.214.19) 您好!臺灣時間:2021/05/06 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏翰
研究生(外文):Po-Han Chen
論文名稱:應用於快速合成微波及毫米波積體電路之新式演化式演算法
論文名稱(外文):Novel Evolutionary Algorithms for Fast Synthesis of Microwave and Millimeter Wave Integrated Circuits
指導教授:王暉
指導教授(外文):Huei Wang
口試委員:于天立林坤佑蔡作敏蔡政翰
口試委員(外文):Tian-Li YuKun-You LinZuo-Min TsaiJeng-Han Tsai
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:95
中文關鍵詞:電路合成電腦輔助設計及最佳化電路設計自動化寬頻匹配技術寬頻D-band放大器寬頻功率放大設計演式計算基因遺傳演算法演化策略
外文關鍵詞:Circuit synthesisComputer-aid design (CAD)Electronic design automation (EDA)Optimization methodbroadband matching techniquebroadband amplifierevolution computationgenetic algorithm (GA)evolutionary strategy (ES)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無線通訊晶片在智慧型手機等高科技產品上扮演著不可或缺的角色。隨著技術快速演進,工程師如何在短時間內設計出高效能的晶片是決定著自身及產業競爭力的關鍵。本篇論文以演化式計算實作微波及毫米波電路的匹配網路自動合成及最佳化,實現了商用模擬軟體缺乏的電路合成功能。在平行計算的加速之下,可在數秒內輕易地完成匹配網路的最佳設計。
論文的第一部分說明如何使用先進的演化式計算去合成匹配網路。有別於過去在微波領域發表過的文獻,我們深入探討匹配網路合成的特性並結合電腦科學領域的先進技術,針對匹配網路設計特別實作出更快且精確的合成演算法,使工程師能夠在不需分析匹配網路架構下設計出高效能的電路。最後以電腦實驗統計提出的演算法的優異效能,如放大器及濾波器電路合成。
第二部分展示用提出的演算法實作的兩個寬頻放大器。首先是增益頻寬第一個涵蓋整個D-band的65-nm CMOS寬頻放大器,我們針對級間網路設計一個最佳化方法來決定所需的放大器級數,並且合成各個寬頻的匹配網路,此外也探討了改善疊接式放大器匹配的方法。而第二個電路是使用0.1-μm GaAs pHEMT製程實作的寬頻Ka-band功率放大器,由於最佳化的匹配網路使得增益、反射損耗、輸出功率及效率能夠有良好的寬頻表現。


This thesis presents a novel algorithm for microwave circuit synthesis and optimization, which is not presented in the current commercial circuit-simulation software. With the help of our proposed algorithm, the time for the design of matching networks can be reduced to only a few seconds.
Our proposed algorithm is based on the real-coded expended compact genetic algorithm (rECGA) and evolutionary strategy (ES), which combines advantages of linkage learning from genetic algorithm (GA) and exploration ability from ES for robust global optimizations. Due to the specific design of the proposed algorithm for matching network synthesis, the possibility of immature convergence is reduced and the optimum matching network can be found rapidly. Besides, the proposed algorithm can simultaneously find many sub-optimal circuits with different topology, which makes the design flexible in choosing the desired circuit architecture. In order to validate the proposed algorithm, several experiments have been performed and analyzed, and the results show that our algorithm outperforms the previously published works.
Two monolithic microwave integrated circuits (MMICs) are also implemented using our algorithm. The first one is a 110-180 GHz broadband amplifier in 65-nm CMOS process, which is the first CMOS amplifier covering the full D-band. The second circuit is a two-stage Ka-band power amplifier in 0.1-μm GaAs pHEMT process, which performs broadband response of gain, return loss, output power and high power-added efficiency (PAE).


口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xvii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey and Background 2
1.2.1 Circuit Synthesis Algorithms 2
1.2.2 Broadband Amplifier 4
1.3 Contributions 5
1.4 Thesis Organization 6
Chapter 2 Novel Evolutionary Algorithms for Fast Synthesis of Microwave Matching Network 7
2.1 Difficulties in Microwave Matching Networks Synthesis 7
2.1.1 Formalization of Microwave Matching Networks Synthesis 7
2.1.2 Naive Algorithm 9
2.1.3 Multimodal and Deceptive Characteristics of Circuits Synthesis 11
2.2 Genetic Algorithm with Linkage Learning Technique 13
2.3 Algorithm Design 17
2.3.1 Design of Overall Architecture 17
2.3.2 Transformation between Circuits and Building Blocks of GA 19
2.3.3 Computation of Circuit Response 20
2.3.4 Implementation of Circuit Synthesis Algorithm 23
2.3.5 Speedup with Parallel Computation 35
2.4 Performance Measurements 38
2.4.1 Experiments of Microwave Circuit Design I: Matching Γ Curve 38
2.4.2 Experiments of Microwave Circuit Design II: Dual-Band Filter 47
2.4.3 Discussions of Performance with Different Procedures 51
Chapter 3 Design of Microwave and Millimeter Wave Broadband Amplifiers via Circuit Synthesis Algorithm 56
3.1 A 110-180 GHz Broadband Amplifier in 65-nm CMOS Process 56
3.1.1 Optimization Method for Inter-stage Matching 57
3.1.2 Selecting Gain-Cell 61
3.1.3 Synthesis of Broadband D-band Amplifier 63
3.1.4 Post-Simulation Results 72
3.1.5 Measurement Results 77
3.2 Synthesis of Ka-band Broadband Medium Power Amplifier in 0.1-μm GaAs pHEMT Process 79
3.2.1 Problem Decomposition and Synthesis 79
3.2.2 Measurement Results 85
Chapter 4 Conclusion and Future Work 89
REFERENCE 91


[1]J. Franco, “The brick wall: NP-completeness,” IEEE Potential, vol. 14, no. 4, pp. 37-40, Oct. 1997.
[2]S. S. Rao, Engineering Optimization Theory and Practice, 2nd ed., Hoboken, NJ: John Wiley & Sons, Inc., 2009.
[3]J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univ. Michigan Press, 1975.
[4]D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning. Reading, MA: Addison-Wesley, 1989.
[5]M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization. New York: Wiley, 2000.
[6]A. John and R. H. Jansen, “Evolutionary generation of (M)MIC component shapes using 2.5D EM simulation and discrete genetic optimization,” IEEE MTT-S Int. Microwave Symp. Dig., 1996, pp. 745-748.
[7]T. Nishino and T. Itoh, “Evolutionary generation of microwave line segment circuits by genetic algorithms,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2048-2055, Sep. 2002.
[8]T. Nishino and T. Itoh, “Evolutionary generation of 3-D line-segment circuits with a broadside-coupled multiconductor transmission-line model,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 10, pp. 2045-2054, Oct. 2003.
[9]M.-I. Lai and S.-K. Jeng, “Compact microstrip dual-band bandpass filters design using genetic-algorithm techniques,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 160-168, Jan. 2006.
[10]Y. A. Hussein and S. M. El-Ghazaly, “Modeling and optimization of microwave devices and circuits using genetic algorithms,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 329-336, Jan. 2004.
[11]D. E. Goldberg, B. Korb and K. Deb, “Messy genetic algorithm: Motivation, analysis, and first results,” Complex Systems, vol. 3, pp. 493-530, 1989.
[12]G. R. Harik, F. G. Lobo and K. Sastry, “Linkage learning via probabilistic modeling in the extended compact genetic algorithm (ECGA),” Studies in Computational Intell., vol. 33, pp. 39-61, 2006
[13]T.-L. Yu, D. E. Goldberg et al, “Dependency structure matrix, genetic algorithms, and effective recombination,” IEEE Evol. Computation Congr., vol. 17, no. 4, pp. 595-626, Dec. 2009.
[14]M. Pelikan, D. E. Goldberg et al, “BOA: the Bayesian optimization algorithm,” Proc. of the Genetic and Evol. Computation Conf., I:525-532, 2009.
[15]L. Fossati, P. L. Lanzi, K. Sastry, D. E. Goldberg and O. Gomez, “A simple real-coded extended compact genetic algorithm,” IEEE Evol. Computation Congr., pp. 342-248, Set. 2007.
[16]I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Formmann-Holzboog, .Stuttgart, 1973.
[17]M. Dianati, I. S. and M. T., “An introduction to genetic algorithm and evolution strategies,” Computer engineering, Univ. of Waterloo, Ontario, Canada.
[18]D. H. Wolper, W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Computation, vol. 1, no. 1, Apr. 1997.
[19]P.-C. Hung and Y.-P. Chen, “iECGA: Integer extended compact genetic algorithm,” Dept. Elect. Eng., National Chiao Tung Univ, Taiwan, no. NCL-TR-2006005, Feb. 2006.
[20]D. E. Goldberg, B. Korb and K. Deb, “Analyzing deception in trap functions,” Found. of Genetic Algorithms 2, pp. 93-108, 1993.
[21]D. E. Goldberg, “Genetic algorithms and Walsh functions: Part II, deception and its analysis,” Complex System, vol. 3, pp. 153-171, 1989.
[22]Mitchell, T. Machine Learning. McGraw Hill, New York, 1997.
[23]Y.-P. Chen and C.-H. Chen, “Enabling the extended compact genetic algorithm for real-parameter optimization by using adaptive discretization,” IEEE Evol. Computation Congr., vol. 18, no. 2, pp. 199-228, Apr. 2010.
[24]S. Tsutsui, M. Pelikan and D. E. Goldberg, “Evolutionary algorithm using marginal histogram models in continuous domain,” Illinois Genetic Algorithms Laboratory, Univ. of Illinois at Urbana-Champaign, Report No. 2001019.
[25]C. E. Shannon, “A mathematical theory of communication,” The Bell System Tech. J., vol. 27, pp. 379-423, Jul. 1948.
[26]Harik G., “Finding multimodal solutions using restricted tournament selection,” Illinois Genetic Algorithms Laboratory, Univ. of Illinois at Urbana-Champaign.
[27]M. J. Quinn, Parallel Programming in C with MPI and OpenMP. New York: McGraw-Hill, 2003, ch. 5.
[28]S. T. Nicolson et al., “A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS,” in IEEE Radio Frequency Integrated Circuits Symp., pp. 229-232, July 2008.
[29]Z. Xu et al., “A compact, fully differential D-band CMOS amplifier in 65nm CMOS, “ in IEEE Asian Solid-State Circuits Conference, Nov. 2010.
[30]M. Seo et al., “A 1.1V 150 GHz amplifier with 8dB gain and +6 dBm saturated output power in standard digital 65nm CMOS using dummy-prefilled microstrip lines,” in Int. Solid-State Circuits Conference Dig. Tech. Paper, pp.484-485, Feb. 2009.
[31]Z.-M. Tsai et al., “A 1.2V broadband D-band power amplifier with 13.2-dBm output power in standard RF 65-nm CMOS,” IEEE MTT-S Int. Microw. Symp., Jun. 2012.
[32]E. Laskin et al., “170-GHz transceiver with on-chip antennas in SiGe technology,” in IEEE Radio Frequency Integrated Circuits Symp., pp 637-640, Jul. 2008.
[33]Y. C. Lee and C. S. Pard, “17–36 GHz broadband PHEMT MMIC power amplifier for point-to-multipoint applications,” in Pro. Int. Conf. Solid-State and Integrated Circuits Tech., vol. 2, pp. 1320–1323, 2001.
[34]M.-C. Chuang, M.-F. Lei, and H. Wang, “A broadband medium power amplifier for millimeter-wave applications,” in IEEE Asia-Pacific Microw. Conf., Proc., vol. 3, pp. 1593–1595, 2005.
[35]P.-C. Huang, Z.-M. Tsai, K.-Y. Lin and H. Wang, “A 17–35 GHz broadband, high efficiency PHEMT power amplifier using synthesized transformer matching technique” in IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 112-119, Jan. 2012.
[36]A. Bessemoulin, S. J. Mahon, J. T. Harvey, and D. Richardson, “Compact K-band watt-level GaAs PHEMT power amplifier MMIC with integrated ESD protection,” in IEEE Eur. Microw. Conf. Dig., pp. 1743–1746, Jun. 2006.
[37]T. H. Cormen et al., Introduction to Algorithms, 3rd ed., Cambridge MA: MIT Press, 2009.
[38]G. Gonzales, Microwave Transistor Amplifier Analysis and Design, 2nd ed., Taipei Taiwan: Pearson Education Taiwan Ltd., 2010.
[39]D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in genetic algorithms,” Illinois Genetic Algorithms Laboratory, Univ. of Illinois at Urbana-Champaign.
[40]D. B. Thomas and W. Luk, “Gaussian random number generators,” ACM Computing Surveys, vol. 39, no. 4, article 11, Oct. 2007.
[41]R. W. Hamming, “Error detecting and error correcting codes,” Bell System Tech. J., vol. 29, no. 2, pp. 147–160, 1950.
[42]Data sheet of packed transistor NE-42484C. [Online]. Available: http://www.allpdf.net/datasheet/fet/fet_rf_l/NE4/NE42484C_1.pdf.
[43]Data sheet and design kits of packed transistor ATF-58143. [Online]. Available: http://www.avagotech.com/pages/en/rf_microwave/transistors/fet/atf-58143/.
[44]“Sonnet Users Guide, Release 12,” Sonnet Software Inc., North Syracus, NY, 2009.
[45]I. Angelov, H. Zirath, N. Rorsmann, “A new empirical nonlinear model for HEMT and MESFET devices,” in IEEE Trans. Microw. Theory Tech., vol. 12, Dec. 1992.
[46]I. Angelov, L. Bengtsson, M. Garcia, “Extensions of the Chalmers nonlinear HEMT and MESFET model,” in IEEE Trans. Microw. Theory Tech., vol. 44, No. 10, Oct. 1996.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔