(3.80.6.131) 您好!臺灣時間:2021/05/17 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉涵之
研究生(外文):Han Chih Yeh
論文名稱:毫米波線性化可變增益放大器及變壓器多疊接低雜訊放大器之研究
論文名稱(外文):Design and Analysis of Millimeter-wave Variable Gain Amplifiers with Built-in Linearizer and Transformer Cascode LowNoise Amplifiers
指導教授:王暉
指導教授(外文):Huei Wang
口試委員:林坤佑陳咨吰張志揚蔡作敏邱煥凱蔡政翰張鴻埜呂良鴻
口試委員(外文):Kun You LinTzu-Hung ChenChi-Yang ChangZuo Min TsaiHwann-Kaeo ChiouJeng-Han TsaiHong-Yeh ChangLiang-Hung Lu
口試日期:2013-07-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:154
中文關鍵詞:低雜訊放大器
外文關鍵詞:low noise amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文第一主題為探討毫米波可變增益放大器與低雜訊放大器之設計與實 現。其一主題在於利用先進的半導體製程,設計出特性良好的毫米波可變增益放 大器,並且此可變增益放大器也具有線性化之功能。此架構是基於可變增益機制 中的電流驅動方法來作改良,並且加入降低雜訊級間電感來使此可變增益放大器 不僅可在毫米波頻段提供高增益、較大的可調增益範圍、並且具有線性化的機制, 實現在台積電九十奈米金氧半場效電晶體製程上。相較於傳統可變增益放大器, 此架構具有最大的可調範圍,在高增益模式下具有較低的雜訊同時也具有良好的 線性度,為世界第一個完成於毫米波的射頻可變增益線性化放大器。
本論文第二主題為變壓器多疊接式放大架構之分析。多疊接組態有面積小、 高增益之特性,因此在低頻曾被採用來設計功率放大器;但由於多疊接組態在高 頻會因為級間寄生電容而產生額外的雜訊,因此至今在低雜訊放大器上之應用僅 廣泛採用雙電晶體疊接架構。在此,本論文提出另一雜訊抑制機制,選擇更小尺 寸電晶體當放大單元以降低功耗,並於多疊接元件間加入變壓器來抑制雜訊、提 高高頻穩定度並且增加操作頻寬及縮小面積,同時結合多疊接架構高增益的優 點,應用於毫米波低雜訊放大器設計;此外,我們使用了台積電九十奈米製程實 現一 Q 頻段四疊接及一 V 頻段三疊接低雜訊放大器做為驗證,此二電路相較於傳 統低雜訊放大器,具有更低功耗、低雜訊、高增益、大頻寬且小面積之特性。此 Q 頻段電路同時為首先完成於毫米波頻段之四疊接組態低雜訊放大器。本論文也研 究了低供應電壓多疊接組態放大器分析。變壓器多疊接組態雖然具有許多好處,
然而其高供應電壓一直是此組態無法在 通訊系統中被採用的原因之一。為了能使疊接組態能夠被應用於實際的通訊系統當中,在此我們提出了一降低電壓的技 術—磁耦合技術。除了降低供應電壓之外,多疊接組態之雜訊指數也可進一步被 降低。以此技術為基礎,我們使用了台積電九十奈米製程實現一 Q 頻段疊接、一 V 頻段疊接及一 V 頻段三疊接低雜訊放大器做為驗證,此二電路相較於傳統低雜 訊放大器,具有更低供應電壓、低雜訊、高增益、大頻寬且高線性度之特性。由 於供應電壓已大幅降低,此多疊接組態可應用於實際的通訊系統中。

In this dissertation, the designs and analysis of millimeter-wave (MMW) variable gain amplifier (VGA) in millimeter-wave (MMW) regime, MMW transformer multi-cascode low noise amplifiers (LNAs) and low voltage cascode LNAs with magnetic coupled technique are investigated. One goal of the dissertation is to design and implement the MMW VGA with impressive performance in modern compound semiconductor process. Based on current steering technique and noise reduction technique, the VGA has a wide gain control range and low noise figure at the high gain state at MMW frequencies in TSMC complementary metal-oxide-semiconductor (CMOS) 90nm technology. Compared with conventional designs, this work presents better RF performance than the previous reported V-band VGAs. At the same time, it overcomes the linearity design bottleneck of VGAs to operate at V-band frequency, and is the first RF VGA with the built-in linearizers in MMW regime.
The transformer multi-cascode amplified structure and the low voltage multi-cascode structure are also described and analyzed in the dissertation. The multi-cascode structure has the advantages of miniature size and high gain. However, since the multi-cascode structure will contribute excess noise at high frequency. Consequently, a low power transformer multi-cascode structure, which incorporates with the high gain characteristic is proposed and employed to the design of millimeter-wave LNAs. For demonstration, a Q-band LNA in CMOS 90 nm process with transformer quadruple-cascode structure and a V-band LNA in 90 nm technology with transformer triple-cascode device are fabricated. The two LNAs feature lower power consumption, better noise figure, higher gain, wider band performance and more compact size than the conventional LNAs. To the best of our knowledge, the Q-band LNA is the first quadruple-cascode LNA implemented in MMW frequency.
In order to improve the high supply voltage issue in multi-cascode structure, the magnetic coupled technique is proposed. With this technique, the supply voltage and the noise figure are further reduced. Thus, the multi-cascode topology can be applied to implement CMOS LNAs for low voltage system applications. For demonstration, a Q-band LNA and two V-band LNAs with this technique are designed and fabricated by using 90nm CMOS technology. These three LNAs feature higher gain, lower noise figure, much lower supply voltage and better linearity than the conventional multi-cascode LNAs and the conventional LNAs.


口試委員會審定書 #
致謝………………………………………………………………………………………i
中文摘要………………………………………………………………………………...ii
ABSTRACT…………………………………………………………………………….iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xvi
Chapter 1 Introduction 1
1.1 Background and Motivation... 1
1.2 Literature Survey 2
1.2.1 MMW CMOS VGAs 3
1.2.2 Q- and V-band CMOS LNAs 4
1.3 Contributions 5
1.3.1 V-band CMOS VGA with Bulit-in Linearizer 5
1.3.2 MMW LNAs with Transformer Multi-Cascode Topology 7
1.3.3 MMW CMOS LNAs with Magnetic Coupled Technique 8
1.4 Chapter Outlines 9
Chapter 2 MMW CMOS Variable Gain Amplifier with Built-in Linearizer 10
2.1 Conventional Designs of CMOS Variable Gain Amplifiers (VGAs) 11
2.1.1 Fundamental and previous works of the VGA 11
2.1.2 Design of the V-band VGA 12

2.2 Analysis of Cascode Configuration with the Built-in Linearizer 13
2.2.1 Variable Gain Mechanism 13
2.2.2 The Impedance Analysis of the Proposed Topology 20

2.2.3 The Built-in Linearizer with the Noise Reduction Technique 22
2.3 Experimental Results 31
2.3.1 Small Signal and Noise Measurements 32
2.3.2 Large Signal Measurements 39
2.4 Summary 42
Chapter 3 MMW Miniature and Low Power CMOS Transformer Multi-Cascode LNAs 44
3.1 Design Consideration and Basic Theory of LNA 45
3.1.1 Fundamental of the LNA [43] 45
3.1.2 Design of the 40-GHz Cascode CMOS LNA with Inter-Stage Inductors 47
3.2 Analysis of CMOS Multi-Cascode LNAs with Noise Reduction Technique 59
3.2.1 Analysis of the Transformer Triple Cascode Configuration 60
3.2.2 Stability Analysis of the Transformer Triple-Cascode Configuration 68
3.2.3 Analysis of the Transformer Quadruple and Multi-Cascode Configuration 72
3.3 V-band LNA with Triple-Cascode Device 88
3.4 Q-band LNA with Quadruple Device 89
3.5 Experimental Results 96
3.5.1 V-band LNA 96
3.5.2 Q-band LNA 99
3.6 Summary 101
Chapter 4 MMW CMOS Low Voltage Cascode LNAs with Magnetic Coupled Technique 104
4.1 Basic Concepts and Conventional Designs of CMOS LNAs 105
4.2 Analysis of CMOS Cascode LNAs with Magnetic Coupled Techniques 106
4.2.1 Cascode Device with the Magnetic Coupled Technique 106
4.2.2 Multi-Cascode Device with the Magnetic Coupled Technique 117
4.3 V-band LNA with Cascode and Triple Cascode Device 125
4.4 Q-band LNA with Cascode Device 129
4.5 Experimental Results 133
4.5.1 V-band LNAs 133
4.5.2 Q-band LNAs 139
4.6 Summary 141
Chapter 5 Conclusion 144
Reference 146
Publication List 154


[1]B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 17–22, Jan. 2006.
[2]C.H. Doan, S. Emami, A. M. Niknejad, R. W. Brodersen, “Millimeter wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144–155, Jan. 2005.
[3]J. Borremans, K. Raczkowski, P. Wambacq, “A digitally controlled compact 57-to-66 GHz front-end in 45 nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009.
[4]C. Marcu, D. Chowdhury, C. Thakkar, Jung-Dong Park; Ling-Kai Kong, M. Tabesh, Yanjie Wang, B. Afshar, B. Gupta, A. Arbabian, S. Gambini, R. Zamani, E. Alon, A. M. Niknejad, “A 90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2009.
[5]A. M. Niknejad et al., mm-Wave Silicon Technology: 60 GHz and Beyond. New York: Springer, 2008
[6]P. Baltus et al., “Systems and architectures for very high frequency radio links,” in Analog Circuit Design. New York: Springer, 2008.
[7]M. I. Skolnik, Radar Handbook. New York: McGraw-Hill, 1970.
[8]E. Brookner, Practical Phased-Array Antenna Systems. Norwood, MA: Artech House, 1991.
[9]D. Parker and D. Z. Zimmermann, “Phased arrays–part 1: Theory and architectures,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 678–687, Mar. 2002.
[10]V. Gopinathan, M. Tarsia and D. Choi, ”A 2.5 V, 30MHz-100MHz,7th-order, equiripple group-delay continuous-time filter and variable-gain amplifier implemented in 0.25-μm CMOS” IEEE ISSCC Dig. Tech. Paper, pp 394-395, Feb.1999.
[11]K. L. Fong, “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” IEEE ISSCC Dig. Tech. Paper, pp. 224 -225, Feb. 1999.


[12]C. H. Wu; C. S. Liu; S. L. Liu., “A 2-GHz CMOS variable-gain amplifier with 50-dB linear-in-magnitude controlled gain range for 10GBase-LX4 ethernet,” IEEE ISSCC Dig. Tech. Paper, pp.484 -541, Feb. 2004.
[13]A. Natarajan, S. Nicolson,; M.-D. Tsai; B. Floyd, “A 60GHz variable-gain LNA in 65nm CMOS,” IEEE Asian Solid-State Circuit Conference (ASSCC) Proceedings, pp. 117-120, Fukuoka, Japan, Nov. 2008.
[14]B. Gilbert, “A Low-noise Wideband Variable-gain Amplifier Using an Interpolated Ladder Attenuator,” IEEE ISSCC Dig. Tech. Paper, pp.280-281, Feb. 1991.
[15]J. Xiao, I. Mehr and J. Silva-Martinez ”A high gain control range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuit, vol. 42, pp. 292-301, Feb. 2007.
[16]C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai and H. Wang, “A 71-76 GHz CMOS variable gain amplifier Using current steering technique” in IEEE RFIC Symposium Digest, pp. 609-612, June 2008.
[17]J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487–2496, Jun. 2006.
[18]S. C. Cripps, RF Power Amplifiers for Wireless Communications. Boston, MA: Artech House, 1999.
[19]B. Razavi, RF Microwave Electronics. Upper Saddle River, NJ: Prentice-Hall, 1998.
[20]T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd.
[21]J. L. Dawson and T. Lee, “Automatic phase alignment for a fully integrated cartesian feedback power amplifier system,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2269–2279, Dec. 2003.
[22]T.-S. Kim,and B.-S. Kim, “Post-Linearization of Cascode CMOS Low noise Amplifier Using Folded PMOS IMD Sinker” in IEEE Microwave and Wireless Components Letters, vol.16, no.4, April 2006.

[23]V. Aparin and L. E. Larson, “Modified derivative superposition method for linearizing FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 571–581, Feb. 2005.
[24]黃柏智(Bo-Jr Huang),微波及毫米波射頻端靜電放電保護電路與毫米波多疊接低雜訊放大器之研究,國立台灣大學電信工程研究所博士論文,2010年。
[25]B.J. Huang, K.Y. Lin, and H. Wang, “Millimeter-wave low power and miniature CMOS multi-cascode low noise amplifiers with noise reduction topology,” IEEE Microwave Theory and Tech., vol. 57, no. 12, Dec. 2009.
[26]C.M. Lo, C.S. Lin, and H. Wang, “A miniature V-band 3-stage cascode LNA in 0.13μm CMOS,” ISSCC Dig. Tech. papers, pp. 402-403, Feb. 2006.
[27]H. D. Lee, K. A. Lee, S. Hong, “A Wideband CMOS Variable Gain Amplifier With an Exponential Gain Control,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1363 - 1373, Jun. 2007.
[28]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[29]V.Aparin and C. Persico, “Effect of out-of-band terminations on intermodulation distortion in common-emitter circuits,” in IEEE MTT-S Dig., vol. 3, pp. 977–980, Sep. 1999.
[30]V. Aparin and L. E. Larson, “Linearization of monolithic LNAs using low-frequency low-impedance input termination,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), pp. 137–140, Sep. 2003.
[31]T. W. Kim, B. Kim, and K. Lee, “Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp.223–229, Jan.2004.
[32]V. Aparin and L. E. Larson, “Modified derivative superposition method for linearizing FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 571–581, Feb. 2005.
[33]S. Ganesan, E. Sanchez-Sinencio, and J. Silva-Martinez, “A highly linear low noise amplifier,” IEEE Trans. Microw. Theory Tech., vol.54, no. 12, pp. 4079–4085, Dec. 2006.
[34]S. A. Maas, Nonlinear microwave and RF circuits, 2nd ed., Artech House Inc., 2003.

[35]D. K. Sheffer and T. H. Lee, “A 1.5 V, 1.5 GHz CMOS low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.
[36]D. K. Sheffer and T. H. Lee, “Corrections to “A 1.5 V, 1.5 GHz CMOS low-noise amplifier”, IEEE J. Solid-State Circuits, vol. 40, no. 6, pp.1397–1398, Jun. 2005.
[37]T. K. Nguyen, C. H. Kim, G. J. Ihm, M. S.Yang, and S. G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1433–1442, May 2004.
[38]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, U.K.: Cambridge Univ. Press, 1998.
[39]X. Fan, H. Zhang; Sanchez-Sinencio, E., “A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588–599, March 2008.
[40]N. Li, K. Bunsen, N. Takayama, B. Qinghong, T. Suzuki, M. Sato, T. Hirose, K. Okada, A. Matsuzawa, "A 24 dB Gain 51-68 GHz CMOS Low Noise Amplifier Using Asymmetric-Layout Transistors, "IEEE European Solid-State Circuits Conference (ESSCIRC), Seville, Spain, pp.342-345, Sep. 2010.
[41]Y.-K Hsieh , J.-L. Kuo, H. Wang ; L.-H. Lu, “A 60 GHz Broadband Low-Noise Amplifier with variable-gain control in 65 nm CMOS” in IEEE Microwave and Wireless Components Letters, vol.21, no.11, pp.610-612, Nov 2011.
[42]S. Kim, H.-C. Kim, D.-H. Kim, S. Jeon, M. Kim and J.-S. Rieh ‘58–72 GHz CMOS wideband variable gain low-noise amplifier’, Electron. Lett., vol.47, no.16, pp.904-906, Aug. 2011.
[43]Shih-Chieh Shin, Ming-Da Tsai, Ren-Chieh Liu, Kun-You Lin, and Huei Wang, “A 3.9-dB NF low-noise amplifier using 0.18-μm CMOS technology,” IEEE Microwave and Wireless Component Letters, vol. 15, no. 7, pp. 448-450, July 2005.
[44]B. Razavi, ”Design of Millimeter-Wave CMOS Radios: A Tutorial,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.56, no.1, pp.4-16, Jan. 2009
[45]H.-C. Yeh, and H. Wang, “A miniature Q-band CMOS LNA with quadruple-cascode topology,” 2011 IEEE MTT-S International Microwave Symposium Digest, Baltimore, WD, USA, June 2011

[46]K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 10.8-GHz CMOS low-noise amplifier using parallel-resonant inductor,” 2007 IEEE MTT-S International Microwave Symposium Digest, Dig., 2007, pp. 1795-1798.
[47]G. Gonzales, Microwave Transistor Amplifiers, 2nd ed., Prentice Hall, 1997. pp. 294-pp.383
[48]A. Amer, E. Hegazi, and H. Ragai, “A Low-Power Wideband CMOS LNA for WiMAX”, IEEE Tran. on Circuit and Systems-II: Express Briefs, vol.54, pp. 4-8, Jan. 2007
[49]R. A. Pucel, H. A. Haus, and H. Statz, “Signal and noise properties of gallium arsenide field effect transistors,” in Advances in Electronics and Electron Physics, L. Morton, Ed. New York: Academic, 1975, vol. 38, pp. 195–265.Chrsitopher Weyers,
[50]M. Varonen, M. Karkkainen, and K. A. I. Halonen, “Millimeter-wave amplifiers in 65-nm CMOS,” in Proc. 2007 European Solid-State Circuit Conf. (ESSCIRC), Sep. 2007, pp. 280–283.
[51]C. Weyers, P. Mayr, J. W. Kunze, and U. Langmann, “A 22.3dB voltage gain 6.1 dB NF 60 GHz LNA in 65nm CMOS with differential output,” ISSCC Dig. Tech. papers, pp. 192-193, Feb. 2008.Fukuoka, Japan, Nov. 2008.
[52]T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan, S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1047-1054, May 2007.
[53]S. Pellerano, Y. Palaskas, and K. Soumyanath, “A 64GHz 6.5 dB NF 15.5dB gain LNA in 90nm CMOS,” in Proc. 2007 European Solid-State Circuit Conf. (ESSCIRC), pp. 352-355, Sept. 2007.
[54]J.-J. Lin, K.-H. To, B. Brown, D. Hammock, M. Majerus, M. Tutt, W.M Huang., “Wideband PA and LNA for 60-GHz radio in 90-nm LP CMOS technology,” 2008 Compound Semiconductor Integrated Circuits Symposium (CSICS), pp. 1-4, Oct. 2008.
[55]C. H. Doan, S Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter-wave CMOS design, “IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[56]M. Varonnen, M. Karkkainen, M. Kantanen, K. Halonen, “Millimeter-wave integrated circuits in 65-nm CMOS,” IEEE JSSC, vol. 43, no. 9, pp. 1991-2002, Sep.2008.
[57]W.-H. Lin, J.-H. Tsai, Y.-N. Jen, T.-W. Huang, and H. Wang, “A 0.7-V 60-GHz low-power LNA with forward body bias technique in 90 nm CMOS process” IEEE European Microwave Conference, (EuMC) Paris, France, pp. 393-396 Sep. 2009
[58]F. Vecchi, S. Bozzola. E. Temporiti D. Guermandi. M. Pozzoni. M. Repossi, M. Cusmai, U. Decanis, A. Mazzanti and F. Svelto “A Wideband Receiver for Multi-Gbit/s Communications in 65 nm CMOS.” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 1044-1057. March 2011.
[59]N. Li, K. Bunsen, N. Takayama, Qinghong Bu, T. Suzuki, M. Sato, T. Hirose, K. Okada, A. Matsuzawa, "A 24 dB Gain 51-68 GHz CMOS Low Noise Amplifier Using Asymmetric-Layout Transistors,"IEEE European Solid-State Circuits Conference (ESSCIRC), Seville, Spain, pp.342-345, Sep. 2010.
[60]H. Shigematsu, T. Hirose, F. Brewer, M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. on Microwave Theory and Tech., vol. 53, no. 2, pp. 472-477, Feb. 2005.
[61]J. H. Tsai, W.C. Chen, T. P. Wang, T.W. Huang, and H. Wang, “A miniature Q-band low noise amplifier using 0.13-μm CMOS technology,” IEEE Microwave and Wireless Component Letters, vol. 16, no. 6, pp. 327-329, June 2006.
[62]M.A. Masud, H. Zirath, M. Ferndahl, and H. O. Vickes, “90 nm CMOS MMIC amplifier,” in IEEE RFIC Symposium Digest, June 2004, pp. 201-204.
[63]S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18-μm CMOS technology,” IEEE Microwave and Wireless Component Letters, vol. 15, no. 7, pp. 448-450, July 2005.
[64]A. Liscidini, C. Ghezzi, E. Depaoli, G. Albasini, I. Bietti, R. Castello, “Common gate transformer feedback LNA in a high IIP3 current mode RF CMOS front-end,” IEEE 2006 CICC Proc. , pp. 25-28. Sep. 2006
[65]C.-C. Tang and S.-I. Liu, “Low-voltage CMOS low-noise amplifier using planar-interleaved transformer,” IEEE Electronics Letter, vol. 47, no. 8, pp.497-498, Feb. 2001.


[66]H. C. Yeh, Z. Y. Liou and H. Wang, “Analysis and design of millimeter-wave low power CMOS LNA with transformer-multi-cascode topology,” IEEE Trans. on Microwave Theory and Tech., vol. 59, no. 12, pp.3441-3454, Dec. 2011.
[67]H.-C. Yeh, C.-C. Chiong, and H. Wang, “A low voltage Q-band CMOS LNA with magnetic coupled cascode topology,” 2012 IEEE MTT-S International Microwave Symposium Digest, Montreal, QC, CA, June 2012.
[68]P. C. Huang, Z. M. Tsai, K. Y. Lin, and H. Wang, “A 17–35 GHz broadband, high efficiency PHEMT power amplifier using synthesized transformer matching technique,” IEEE Trans. on Microwave Theory and Tech., vol. 60, no. 1, pp.112-119, Dec. 2012.
[69]F. Ellinger, “26-42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522-528, Mar. 2004.
[70]P.-Y. Chang, S.-H. Su, S. S. H. Hsu, W.-H. Cho, and J.-D. Jin, “An ultra-low-power transformer-feedback 60 GHz low-noise amplifier in 90 nm CMOS,” IEEE Microwave and Wireless Component Letters, vol. 22, no. 4, pp. 197-199, Apr. 2012.
[71]P. Sakian, E. Janssen, A. H. M. van Roermun, and R. Mahmoudi, “Analysis and design of a 60 GHz wideband voltage-voltage transformer feedback LNA,” IEEE Trans. on Microwave Theory and Tech., vol. 60, no. 3, pp. 702-713, Mar. 2012.
[72]H. Shigematsu, T. Hirose, F. Brewer, M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. on Microwave Theory and Tech., vol. 53, no. 2, pp. 472-477, Feb. 2005.
[73]Advanced Design System Documentation 2005A, Agilent Technologies 2005.
[74]Jhe-Jia Kuo, Wei-Heng Lin, Che-Chun Kuo, Jeffrey Ronald Tzeng, Zuo-Min Tsai, Kun-You Lin, and Huei Wang, “A 71-76 GHz chip set for wireless communication in 65-nm CMOS technology,” in 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, June 2009.
[75]Y. Lin, S. Hsu, J. Jin, and C. Chan, “A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique,” IEEE Microwave and Wireless Component Letters, vol. 17, no. 3, pp. 232–234, Mar. 2007.
[76]Behzad Razavi, RF Microelectronics, Prentice Hall, 1998.

[77]Emanuel Cohen, Shmuel Ravid, and Dan Ritter, “A ultra low power LNA with 15 dB gain and 4.4dB NF in 90nm CMOS process for 60 GHz phase array radio,” in IEEE RFIC Symposium Digest, June 2008, pp. 61-64.
[78]Ibrahim Haroun, and Yaun-Chai Hsu, “A V-band CMOS elevated-center CPW amplifier for high-speed radio-over-fiber systems,” 2009 IEEE International Symposium on Radio-Frequency Integration Technology, pp. 233-236.
[79]Michael Kraemer, Daniela Dragonmirescu, and Robert Plana, “A low-power high-gain LNA for the 60 GHz band in a 65 nm CMOS technology,” 209th Asia Pacific Microwave Conference Technical Digest, Singapore, Dec. 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top