[1]B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 17–22, Jan. 2006.
[2]C.H. Doan, S. Emami, A. M. Niknejad, R. W. Brodersen, “Millimeter wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144–155, Jan. 2005.
[3]J. Borremans, K. Raczkowski, P. Wambacq, “A digitally controlled compact 57-to-66 GHz front-end in 45 nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009.
[4]C. Marcu, D. Chowdhury, C. Thakkar, Jung-Dong Park; Ling-Kai Kong, M. Tabesh, Yanjie Wang, B. Afshar, B. Gupta, A. Arbabian, S. Gambini, R. Zamani, E. Alon, A. M. Niknejad, “A 90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2009.
[5]A. M. Niknejad et al., mm-Wave Silicon Technology: 60 GHz and Beyond. New York: Springer, 2008
[6]P. Baltus et al., “Systems and architectures for very high frequency radio links,” in Analog Circuit Design. New York: Springer, 2008.
[7]M. I. Skolnik, Radar Handbook. New York: McGraw-Hill, 1970.
[8]E. Brookner, Practical Phased-Array Antenna Systems. Norwood, MA: Artech House, 1991.
[9]D. Parker and D. Z. Zimmermann, “Phased arrays–part 1: Theory and architectures,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 678–687, Mar. 2002.
[10]V. Gopinathan, M. Tarsia and D. Choi, ”A 2.5 V, 30MHz-100MHz,7th-order, equiripple group-delay continuous-time filter and variable-gain amplifier implemented in 0.25-μm CMOS” IEEE ISSCC Dig. Tech. Paper, pp 394-395, Feb.1999.
[11]K. L. Fong, “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” IEEE ISSCC Dig. Tech. Paper, pp. 224 -225, Feb. 1999.
[12]C. H. Wu; C. S. Liu; S. L. Liu., “A 2-GHz CMOS variable-gain amplifier with 50-dB linear-in-magnitude controlled gain range for 10GBase-LX4 ethernet,” IEEE ISSCC Dig. Tech. Paper, pp.484 -541, Feb. 2004.
[13]A. Natarajan, S. Nicolson,; M.-D. Tsai; B. Floyd, “A 60GHz variable-gain LNA in 65nm CMOS,” IEEE Asian Solid-State Circuit Conference (ASSCC) Proceedings, pp. 117-120, Fukuoka, Japan, Nov. 2008.
[14]B. Gilbert, “A Low-noise Wideband Variable-gain Amplifier Using an Interpolated Ladder Attenuator,” IEEE ISSCC Dig. Tech. Paper, pp.280-281, Feb. 1991.
[15]J. Xiao, I. Mehr and J. Silva-Martinez ”A high gain control range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuit, vol. 42, pp. 292-301, Feb. 2007.
[16]C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai and H. Wang, “A 71-76 GHz CMOS variable gain amplifier Using current steering technique” in IEEE RFIC Symposium Digest, pp. 609-612, June 2008.
[17]J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487–2496, Jun. 2006.
[18]S. C. Cripps, RF Power Amplifiers for Wireless Communications. Boston, MA: Artech House, 1999.
[19]B. Razavi, RF Microwave Electronics. Upper Saddle River, NJ: Prentice-Hall, 1998.
[20]T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd.
[21]J. L. Dawson and T. Lee, “Automatic phase alignment for a fully integrated cartesian feedback power amplifier system,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2269–2279, Dec. 2003.
[22]T.-S. Kim,and B.-S. Kim, “Post-Linearization of Cascode CMOS Low noise Amplifier Using Folded PMOS IMD Sinker” in IEEE Microwave and Wireless Components Letters, vol.16, no.4, April 2006.
[23]V. Aparin and L. E. Larson, “Modified derivative superposition method for linearizing FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 571–581, Feb. 2005.
[24]黃柏智(Bo-Jr Huang),微波及毫米波射頻端靜電放電保護電路與毫米波多疊接低雜訊放大器之研究,國立台灣大學電信工程研究所博士論文,2010年。[25]B.J. Huang, K.Y. Lin, and H. Wang, “Millimeter-wave low power and miniature CMOS multi-cascode low noise amplifiers with noise reduction topology,” IEEE Microwave Theory and Tech., vol. 57, no. 12, Dec. 2009.
[26]C.M. Lo, C.S. Lin, and H. Wang, “A miniature V-band 3-stage cascode LNA in 0.13μm CMOS,” ISSCC Dig. Tech. papers, pp. 402-403, Feb. 2006.
[27]H. D. Lee, K. A. Lee, S. Hong, “A Wideband CMOS Variable Gain Amplifier With an Exponential Gain Control,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1363 - 1373, Jun. 2007.
[28]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[29]V.Aparin and C. Persico, “Effect of out-of-band terminations on intermodulation distortion in common-emitter circuits,” in IEEE MTT-S Dig., vol. 3, pp. 977–980, Sep. 1999.
[30]V. Aparin and L. E. Larson, “Linearization of monolithic LNAs using low-frequency low-impedance input termination,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), pp. 137–140, Sep. 2003.
[31]T. W. Kim, B. Kim, and K. Lee, “Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp.223–229, Jan.2004.
[32]V. Aparin and L. E. Larson, “Modified derivative superposition method for linearizing FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 571–581, Feb. 2005.
[33]S. Ganesan, E. Sanchez-Sinencio, and J. Silva-Martinez, “A highly linear low noise amplifier,” IEEE Trans. Microw. Theory Tech., vol.54, no. 12, pp. 4079–4085, Dec. 2006.
[34]S. A. Maas, Nonlinear microwave and RF circuits, 2nd ed., Artech House Inc., 2003.
[35]D. K. Sheffer and T. H. Lee, “A 1.5 V, 1.5 GHz CMOS low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.
[36]D. K. Sheffer and T. H. Lee, “Corrections to “A 1.5 V, 1.5 GHz CMOS low-noise amplifier”, IEEE J. Solid-State Circuits, vol. 40, no. 6, pp.1397–1398, Jun. 2005.
[37]T. K. Nguyen, C. H. Kim, G. J. Ihm, M. S.Yang, and S. G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1433–1442, May 2004.
[38]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, U.K.: Cambridge Univ. Press, 1998.
[39]X. Fan, H. Zhang; Sanchez-Sinencio, E., “A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588–599, March 2008.
[40]N. Li, K. Bunsen, N. Takayama, B. Qinghong, T. Suzuki, M. Sato, T. Hirose, K. Okada, A. Matsuzawa, "A 24 dB Gain 51-68 GHz CMOS Low Noise Amplifier Using Asymmetric-Layout Transistors, "IEEE European Solid-State Circuits Conference (ESSCIRC), Seville, Spain, pp.342-345, Sep. 2010.
[41]Y.-K Hsieh , J.-L. Kuo, H. Wang ; L.-H. Lu, “A 60 GHz Broadband Low-Noise Amplifier with variable-gain control in 65 nm CMOS” in IEEE Microwave and Wireless Components Letters, vol.21, no.11, pp.610-612, Nov 2011.
[42]S. Kim, H.-C. Kim, D.-H. Kim, S. Jeon, M. Kim and J.-S. Rieh ‘58–72 GHz CMOS wideband variable gain low-noise amplifier’, Electron. Lett., vol.47, no.16, pp.904-906, Aug. 2011.
[43]Shih-Chieh Shin, Ming-Da Tsai, Ren-Chieh Liu, Kun-You Lin, and Huei Wang, “A 3.9-dB NF low-noise amplifier using 0.18-μm CMOS technology,” IEEE Microwave and Wireless Component Letters, vol. 15, no. 7, pp. 448-450, July 2005.
[44]B. Razavi, ”Design of Millimeter-Wave CMOS Radios: A Tutorial,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.56, no.1, pp.4-16, Jan. 2009
[45]H.-C. Yeh, and H. Wang, “A miniature Q-band CMOS LNA with quadruple-cascode topology,” 2011 IEEE MTT-S International Microwave Symposium Digest, Baltimore, WD, USA, June 2011
[46]K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 10.8-GHz CMOS low-noise amplifier using parallel-resonant inductor,” 2007 IEEE MTT-S International Microwave Symposium Digest, Dig., 2007, pp. 1795-1798.
[47]G. Gonzales, Microwave Transistor Amplifiers, 2nd ed., Prentice Hall, 1997. pp. 294-pp.383
[48]A. Amer, E. Hegazi, and H. Ragai, “A Low-Power Wideband CMOS LNA for WiMAX”, IEEE Tran. on Circuit and Systems-II: Express Briefs, vol.54, pp. 4-8, Jan. 2007
[49]R. A. Pucel, H. A. Haus, and H. Statz, “Signal and noise properties of gallium arsenide field effect transistors,” in Advances in Electronics and Electron Physics, L. Morton, Ed. New York: Academic, 1975, vol. 38, pp. 195–265.Chrsitopher Weyers,
[50]M. Varonen, M. Karkkainen, and K. A. I. Halonen, “Millimeter-wave amplifiers in 65-nm CMOS,” in Proc. 2007 European Solid-State Circuit Conf. (ESSCIRC), Sep. 2007, pp. 280–283.
[51]C. Weyers, P. Mayr, J. W. Kunze, and U. Langmann, “A 22.3dB voltage gain 6.1 dB NF 60 GHz LNA in 65nm CMOS with differential output,” ISSCC Dig. Tech. papers, pp. 192-193, Feb. 2008.Fukuoka, Japan, Nov. 2008.
[52]T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan, S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1047-1054, May 2007.
[53]S. Pellerano, Y. Palaskas, and K. Soumyanath, “A 64GHz 6.5 dB NF 15.5dB gain LNA in 90nm CMOS,” in Proc. 2007 European Solid-State Circuit Conf. (ESSCIRC), pp. 352-355, Sept. 2007.
[54]J.-J. Lin, K.-H. To, B. Brown, D. Hammock, M. Majerus, M. Tutt, W.M Huang., “Wideband PA and LNA for 60-GHz radio in 90-nm LP CMOS technology,” 2008 Compound Semiconductor Integrated Circuits Symposium (CSICS), pp. 1-4, Oct. 2008.
[55]C. H. Doan, S Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter-wave CMOS design, “IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[56]M. Varonnen, M. Karkkainen, M. Kantanen, K. Halonen, “Millimeter-wave integrated circuits in 65-nm CMOS,” IEEE JSSC, vol. 43, no. 9, pp. 1991-2002, Sep.2008.
[57]W.-H. Lin, J.-H. Tsai, Y.-N. Jen, T.-W. Huang, and H. Wang, “A 0.7-V 60-GHz low-power LNA with forward body bias technique in 90 nm CMOS process” IEEE European Microwave Conference, (EuMC) Paris, France, pp. 393-396 Sep. 2009
[58]F. Vecchi, S. Bozzola. E. Temporiti D. Guermandi. M. Pozzoni. M. Repossi, M. Cusmai, U. Decanis, A. Mazzanti and F. Svelto “A Wideband Receiver for Multi-Gbit/s Communications in 65 nm CMOS.” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 1044-1057. March 2011.
[59]N. Li, K. Bunsen, N. Takayama, Qinghong Bu, T. Suzuki, M. Sato, T. Hirose, K. Okada, A. Matsuzawa, "A 24 dB Gain 51-68 GHz CMOS Low Noise Amplifier Using Asymmetric-Layout Transistors,"IEEE European Solid-State Circuits Conference (ESSCIRC), Seville, Spain, pp.342-345, Sep. 2010.
[60]H. Shigematsu, T. Hirose, F. Brewer, M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. on Microwave Theory and Tech., vol. 53, no. 2, pp. 472-477, Feb. 2005.
[61]J. H. Tsai, W.C. Chen, T. P. Wang, T.W. Huang, and H. Wang, “A miniature Q-band low noise amplifier using 0.13-μm CMOS technology,” IEEE Microwave and Wireless Component Letters, vol. 16, no. 6, pp. 327-329, June 2006.
[62]M.A. Masud, H. Zirath, M. Ferndahl, and H. O. Vickes, “90 nm CMOS MMIC amplifier,” in IEEE RFIC Symposium Digest, June 2004, pp. 201-204.
[63]S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18-μm CMOS technology,” IEEE Microwave and Wireless Component Letters, vol. 15, no. 7, pp. 448-450, July 2005.
[64]A. Liscidini, C. Ghezzi, E. Depaoli, G. Albasini, I. Bietti, R. Castello, “Common gate transformer feedback LNA in a high IIP3 current mode RF CMOS front-end,” IEEE 2006 CICC Proc. , pp. 25-28. Sep. 2006
[65]C.-C. Tang and S.-I. Liu, “Low-voltage CMOS low-noise amplifier using planar-interleaved transformer,” IEEE Electronics Letter, vol. 47, no. 8, pp.497-498, Feb. 2001.
[66]H. C. Yeh, Z. Y. Liou and H. Wang, “Analysis and design of millimeter-wave low power CMOS LNA with transformer-multi-cascode topology,” IEEE Trans. on Microwave Theory and Tech., vol. 59, no. 12, pp.3441-3454, Dec. 2011.
[67]H.-C. Yeh, C.-C. Chiong, and H. Wang, “A low voltage Q-band CMOS LNA with magnetic coupled cascode topology,” 2012 IEEE MTT-S International Microwave Symposium Digest, Montreal, QC, CA, June 2012.
[68]P. C. Huang, Z. M. Tsai, K. Y. Lin, and H. Wang, “A 17–35 GHz broadband, high efficiency PHEMT power amplifier using synthesized transformer matching technique,” IEEE Trans. on Microwave Theory and Tech., vol. 60, no. 1, pp.112-119, Dec. 2012.
[69]F. Ellinger, “26-42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522-528, Mar. 2004.
[70]P.-Y. Chang, S.-H. Su, S. S. H. Hsu, W.-H. Cho, and J.-D. Jin, “An ultra-low-power transformer-feedback 60 GHz low-noise amplifier in 90 nm CMOS,” IEEE Microwave and Wireless Component Letters, vol. 22, no. 4, pp. 197-199, Apr. 2012.
[71]P. Sakian, E. Janssen, A. H. M. van Roermun, and R. Mahmoudi, “Analysis and design of a 60 GHz wideband voltage-voltage transformer feedback LNA,” IEEE Trans. on Microwave Theory and Tech., vol. 60, no. 3, pp. 702-713, Mar. 2012.
[72]H. Shigematsu, T. Hirose, F. Brewer, M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. on Microwave Theory and Tech., vol. 53, no. 2, pp. 472-477, Feb. 2005.
[73]Advanced Design System Documentation 2005A, Agilent Technologies 2005.
[74]Jhe-Jia Kuo, Wei-Heng Lin, Che-Chun Kuo, Jeffrey Ronald Tzeng, Zuo-Min Tsai, Kun-You Lin, and Huei Wang, “A 71-76 GHz chip set for wireless communication in 65-nm CMOS technology,” in 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, June 2009.
[75]Y. Lin, S. Hsu, J. Jin, and C. Chan, “A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique,” IEEE Microwave and Wireless Component Letters, vol. 17, no. 3, pp. 232–234, Mar. 2007.
[76]Behzad Razavi, RF Microelectronics, Prentice Hall, 1998.
[77]Emanuel Cohen, Shmuel Ravid, and Dan Ritter, “A ultra low power LNA with 15 dB gain and 4.4dB NF in 90nm CMOS process for 60 GHz phase array radio,” in IEEE RFIC Symposium Digest, June 2008, pp. 61-64.
[78]Ibrahim Haroun, and Yaun-Chai Hsu, “A V-band CMOS elevated-center CPW amplifier for high-speed radio-over-fiber systems,” 2009 IEEE International Symposium on Radio-Frequency Integration Technology, pp. 233-236.
[79]Michael Kraemer, Daniela Dragonmirescu, and Robert Plana, “A low-power high-gain LNA for the 60 GHz band in a 65 nm CMOS technology,” 209th Asia Pacific Microwave Conference Technical Digest, Singapore, Dec. 2009.