(3.238.173.209) 您好!臺灣時間:2021/05/08 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴建伯
研究生(外文):Chien-Pai Lai
論文名稱:共平面波導饋入槽孔天線之縮小化及阻抗匹配設計
論文名稱(外文):Miniaturization and Impedance Matching of Coplanar Waveguide-fed Slot Antennas
指導教授:陳士元陳士元引用關係
指導教授(外文):Shih-Yuan Chen
口試委員:楊成發鍾世忠林根煌馬自莊陳念偉曾昭雄許博文
口試委員(外文):Chang-Fa YangShyh-Jong ChungKen-Huang LinTzyh-Ghuang MaNan-Wei ChenChao-hsiung TsengPowen Hsu
口試日期:2013-06-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:142
中文關鍵詞:共平面波導共振型天線槽孔天線微小化天線
外文關鍵詞:Coplanar waveguidesresonant-type antennasslot antennasminiaturized antennas
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,吾人先提出了共振型天線的阻抗匹配技術及其設計公式。從微波共振電路的觀點,吾人探討了品質因子、半功率頻寬及輸入阻抗(導納)對頻率的微分三者之間的關係。利用此關係及共振特性,串聯及並聯共振器的阻抗匹配可分別利用集總電感和電容去完成。吾人也提出了相對應的設計公式,而這些設計公式有助於預測所使用的集總元件的感值。此外,論文中也進一步探討匹配後共振電路的品質因子,但發現其增加量非常些微。
本論文的第二部份是聚焦於共平面波導饋入的槽孔型天線的微小化,而這些天線的阻抗匹配可以前述的技術完成。當吾人利用電抗性負載,共平面波導饋入的末端短路及開路的半波長槽孔天線可以被有效地縮小。而共平面波導的雙側接地面則被裁切用來放置這些所使用的電抗性負載。因此整個天線的面積,包含槽孔輻射體及接地面,可以大幅縮小。以2.4-GHz的原型天線為例,整個天線的面積只有0.088λ0 × 0.062λ0 (λ0為2.4 GHz時的空氣波長)。
最後,當吾人再度利用微波共振器的觀點及同樣的阻抗匹配技術,共平面波導電感性饋入的環形槽孔天線的基礎共振模態可以被匹配至五十歐姆,而此模態也是第一次被運用在天線設計當中。因為操作在基礎共振模態的環型槽孔輻射體的周長只有半個導波波長,故可達微小化之目的。此外,此環型槽孔輻射體的高階共振模態也同時被匹配用的電感有效抑制。其原型天線在設計的頻率(2.5 GHz)可以達到很好的匹配,且其寬頻的諧振抑制效果可達至少20 GHz。


The impedance matching technique and design formulas for resonant-type antennas are first proposed in this dissertation. From the viewpoint of microwave resonant circuit, we investigate the relation among quality factor, half-power bandwidth, and frequency derivate of input impedance (admittance). By using this relation and the resonant characteristics, the lumped inductor and capacitor are added to accomplish the input impedance matching of series and parallel resonators, respectively. The corresponding design formulas are also proposed, and they are of great help to estimate the reactance values of the used lumped components. Besides, the quality factor of the matched resonant circuit is further examined, but it is found that the increase in quality factor is insignificant.
The second part of this dissertation focuses on the miniaturization of coplanar waveguide-fed slot type antenna, in which the impedance matching of these proposed antennas is achieved by the aforementioned technique. Employing the reactive terminations, the short- and open-ended half-wavelength slot antennas fed by coplanar waveguide can be effectively miniaturized. The bilateral ground plane of the feeding coplanar waveguide is truncated to accommodate the used reactive terminations. As a result, the total antenna area, including slot radiator and ground plane, can be greatly reduced. For the 2.4-GHz prototype antenna, its antenna area is only 0.088λ0 × 0.062λ0, where λ0 is the free space wavelength at 2.4 GHz.
At last, when we again apply the design concept of microwave resonator and the impedance matching technique, the fundamental resonant mode of the inductively coplanar waveguide-fed slot loop antenna can be matched to 50-Ω and it is utilized in antenna design for the first time. Since the perimeter of the slot loop radiator operated at fundamental mode is a half guided-wavelength, the area of the slot loop radiator is also relatively smaller as compared to the conventional designs. Moreover, the higher-order resonant modes of this slot loop radiator are accordingly suppressed by the added quasi-lumped inductors for impedance matching. The prototype antenna is well matched at 2.5 GHz and a wideband harmonic suppression up to at least 20 GHz is achieved.


口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 1
1.3 Contribution 7
1.4 Chapter Outline 9
Chapter 2 Microwave Resonator, Quality Factor and Small Antenna Theory 11
2.1 Introduction 11
2.2 Microwave Resonator 12
2.2.1 Series and Parallel Resonance 12
2.2.2 Quality Factor 20
2.2.3 Impedance Matching of the Resonant Circuit 28
2.3 Review of Small Antenna Theory 42
Chapter 3 Miniaturization of CPW-Fed Slot Antennas Using Reactive Terminations and Truncated Bilateral Ground Plane 56
3.1 Introduction 56
3.2 CPW-Fed Half-Wavelength Slot Antenna 58
3.2.1 Short-ended Slot Radiator 58
3.2.2 Open-ended Slot Radiator 64
3.3 Miniaturized Slot Antennas Using Lumped Reactive Terminations and Truncated Bilateral Ground Plane 70
3.3.1 Slot Radiator with Reactive Terminations 70
3.3.2 Discussion on the Truncation of Bilateral Ground Plane 79
3.4 Prototype Antennas and Results 82
3.4.1 Prototype Antenna Using Inductive Terminations 82
3.4.2 Prototype Antenna Using Capacitive Terminations 87
3.4.3 Antenna Performance 90
3.4.4 Loss Analysis 95
3.4.5 2.4-GHz Prototype Antenna 96
3.4.6 Discussion on Bandwidth Efficiency Product 97
3.5 Conclusion 100
Chapter 4 On The Fundamental Resonance of Slot Loop Antenna Inductively Fed by a Coplanar Waveguide 101
4.1 Introduction 101
4.2 Resonant Modes of Slot Loop Antenna Fed by a CPW 103
4.2.1 Capacitively Fed Slot Loop Antenna 103
4.2.2 Inductively Fed Slot Loop Antenna 106
4.3 Impedance Matching at Fundamental Mode and Harmonic Suppression 111
4.3.1 Impedance Matching by Using the Lumped Inductors 111
4.3.2 Harmonic Suppression by Using the Lumped Inductors and Narrower Inductive feed 114
4.4 Prototype Antenna and Results 116
4.4.1 Prototype Antenna 116
4.4.2 Antenna Performance 117
4.4.3 Loss Analysis 120
4.4.4 Prototype Antenna with a Tuned Aspect Ratio 121
4.4.5 Discussion on Bandwidth Efficiency Product 124
4.5 Conclusion 127
Chapter 5 Conclusion and Future Work 128
5.1 Conclusion 128
5.2 Future Work 130
REFERENCE 131
Publication List of Chien-Pai Lai 141
Journal Article 141
Conference and Proceeding Paper 141


[1]H. A. Wheeler, “Fundamental limitations of small antennas,” in Proc. IRE, vol. 35, pp. 1479–1484, Dec. 1947.
[2]L. J. Chu, “Physical limitations on omni-directional antennas,” J. Appl. Phys., vol. 19, pp. 1163–1175, Dec. 1948.
[3]R. C. Hansen, “Fundamental limitations in antennas,” in Proc. IEEE, vol. 69, pp. 170–182, 1981.
[4]J. L. Volakis, C. C. Chen, and K. Fujimoto, Small Antennas. McGraw Hill, 2010.
[5]G. F. Dionne, “Magnetic relaxation and anisotropy effects of high-frequency permeability,” IEEE Trans. Magnetics., vol. 39, no. 5, pp. 3121–3126, Sep. 2003.
[6]F. Erkmen, C. C. Chen, and J. L. Volakis, “UWB magneto-dielectric ground plane for low-profile antenna applications,” IEEE Antennas Propag. Magazine, vol. 50, no. 4, pp. 211–216, Aug. 2008.
[7]F. Erkmen, C. C. Chen, and J. L. Volakis, “Impedance matched ferrite layers as ground plane treatments to improve antenna wide-band performance,” IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 263–266, Jan. 2009.
[8]Y. Zhou, C. C. Chen, and J. L. Volakis, “Dual band proximity-fed stacked patch antenna for tri-band GPS applications,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 220–223, Jan. 2007.
[9]Y. Zhou, C. C. Chen, and J. L. Volakis, “Single-fed circularly polarized antenna element with reduced coupling for GPS arrays,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1469–1472, May. 2008.
[10]J. I. Moon and S. O. Park, “Small chip antenna for 2.4/5.8-GHz dual ISM-band applications,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 313–315, 2003.
[11]Y. P. Zhang, M. Sun, and W. Lin, “Novel antenna-in-package design in LTCC for single-chip RF transceivers,” IEEE Trans. Antennas Propag., vol. 56, no. 7, pp. 2079–2088, Jul. 2008.
[12]Y. Lee, H. Lim, and H. Lee, “Triple-band compact chip antenna using coupled meander line structure for mobile RFID/PCS/WiBro,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Albuquerque, NM, Jul. 2006, pp. 2649–2652.
[13]R. L. Li, G. Jean, M. M. Tentzeris, and J. Laskar, “Development and analysis of a folded shorted-patch antenna with reduced size,” IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 555–562, Feb. 2004.
[14]A. Holub and M. Polivka, “A novel microstrip patch antenna miniaturization techniques: a meanderly folded shorted-patch antenna,” in Proc. 14th Conf. Microw. Tech., Prague, Czech, Apr. 2008, pp. 1–4.
[15]C. R. Rowell and R. D. Murch, “A capacitively loaded PIFA for compact mobile telephone handsets,” IEEE Trans. Antennas Propag., vol. 45, no. 5, pp. 837–842, May. 1997.
[16]R. C. Fenwick, “A new class of electrically small antennas,” IEEE Trans. Antennas Propag., vol. 13, no. 3, pp. 379–383, May. 1965.
[17]J. Rashed and C. T. Tai, “A new class of resonant antennas,” IEEE Trans. Antennas Propag., vol. 39, no. 9, pp. 1428–1430, Sep. 1991.
[18]H. Nakano, H. Tagami, A. Yoshizawa, and J. Yanauchi, “Shortening ratios of modified dipoles,” IEEE Trans. Antennas Propag., vol. 32, no. 4, pp. 385–386, Apr. 1984.
[19]J. Rashed-Mohassel, A. Mehdipour, and H. Aliakbarian, “New schemes of size reduction in space filling resonant dipole antennas,” in Proc. 3rd Eur. Conf. Antennas Propag., Berlin, German, Mar. 2009, pp. 2430–2432.
[20]D. H. Werner and S. Gangul, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. Magazine, vol. 45, no. 1, pp. 38–57, Feb. 2003.
[21]J. P. Gianvittorio and Y. Rahmat-Samii, “Fractal antennas: a novel antenna miniaturization technique and applications,” IEEE Antennas Propag. Magazine, vol. 44, no. 1, pp. 20–36, Feb. 2002.
[22]S. R. Best and J. D. Morrow, “The effectiveness of space-filling fractal geometry in lowering resonant frequency,” IEEE Antennas Wireless Propag. Lett., vol. 1, pp. 112–115, 2002.
[23]H. T. Hguyen, S. Noghanian, and L. Shafai, “Microstrip patch miniaturization by slots loading,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Washington, DC, Jul. 2005, pp. 215–218.
[24]S. Y. Chen, H. T. Chou, and Y. L. Chiu, “A sized-reduced microstrip antenna for the applications of GPS signal reception,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Honolulu, HI, Jun. 2007, pp. 5443–5446.
[25]K. L. Wong, J. S. Kuo, and T. W. Chiou, “Compact microstrip antennas with slots loaded in the ground plane,” in Proc. 11th Int. Conf. Antenna Propag., Manchester, UK, Apr. 2001, pp. 623–626.
[26]M. Lee, B. A. Kramer, C. C. Chen, and J. L. Volakis, “Distributed lumped loads and lossy transmission line model for wideband spiral antenna miniaturization and characterization,” IEEE Trans. Antennas Propag., vol. 55, no. 10, pp. 2671–2678, Oct. 2007.
[27]P.-L. Chi, R. Waterhouse, and T. Itoh, “Antenna miniaturization using slow wave enhancement factor from loaded transmission line models,” IEEE Trans. Antenna Propag., vol. 59, no. 1, pp. 48–57, Jan. 2011.
[28]M. C. Scardelletti, G. E. Ponchak, S. Merritt, J. S. Minor, and C. A. Zorman, “Electrically small folded slot antenna utilizing capacitive loaded slot lines,” in Proc. IEEE Radio and Wireless Symp., Orlando, FL, Jan. 2008, pp. 731–734,
[29]D. H. Lee, A. Chauraya, Y. Vardaxoglou, and W. S. Park, “A compact and low-profile tunable loop antenna integrated with inductors,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 621–624, 2008.
[30]W. J. R. Hoefer, “Equivalent series inductivity of a narrow transverse slit in microstrip,” IEEE Trans. Microw. Theory Tech., vol. 25, no. 10, pp. 822–824, Jun. 1977.
[31]C. Caloz and T. Itoh, Electromagnetic Metamaterials, Wiley- IEEE Press, 2005.
[32]S. Clavijo, R. E. Diaz, and W. E. McKinzie, “Design methodology for Sievenpiper high-impedance surface: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. Antenna Propag., vol. 51, no. 10, pp. 2678–2690, Oct. 2003.
[33]M. F. Abedin and M. Ali, “Effects of EBG reflection phase profiles on the input impedance and bandwidth of ultrathin directional dipoles,” IEEE Trans. Antenna Propag., vol. 53, no. 11, pp. 3664–3672, Nov. 2005.
[34]J. M. Bell and M. F. Iskander, “A low-profile Archimedean spiral antenna using an EBG grounded,” IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 223–226, 2004.
[35]F. Yang and Y. Rahmat-Samii, “Curl antennas over electromagnetic band-gap surface: a low profile design for CP applications,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Boston, MA, Jul. 2001, pp. 372–375.
[36]S. Wang, A. P. Feresidis, G. Goussetis, and J. C. Varadaxoglou, “Artificial magnetic conductors for low-profile resonant cavity antennas,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Monterey, CA, Jun. 2004, pp. 1423–1426.
[37]A. Lai, K. M. K. H. Leong, and T. Itoh, “Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures,” IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 868–876, Mar. 2007.
[38]J.-H. Park, Y.-H. Ryo, and J.-H Lee, “Mu-zero resonance antenna,” IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1865–1875, Jun. 2010.
[39]C.-P. Lai, S.-C. Chiu, H.-J. Li, and S.-Y. Chen, “Zeroth-order resonator antennas using inductor-loaded and capacitor-loaded CPWs,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3448–3453, Sept. 2011.
[40]Y. Dong and T. Itoh, “Miniaturized substrate integrated waveguide slot antennas based negative order resonance,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3856–3864, Dec. 2010.
[41]C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromanetic device applications,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 12, pp. 1087–1090, Dec. 1969.
[42]R. N. Simons, Coplanar waveguide circuits, components, and systems. New York: Wiley-Interscience, 2001.
[43]R. W. Jackson, “Consideration in the use of coplanar waveguide for millimeter-wave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 34, no. 12, pp. 1450–1456, Dec. 1986.
[44]B. K. Kormanyos, W. Harokopus, L. P. B. Katehi, and G. M. Rebeiz, “CPW-fed active slot antenna,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 4, pp. 541–545, Dec. 1994.
[45]H.-C. Liu, T.-S. Horng, and N. G. Alexopoulous, “Radiation of printed antennas with a coplanar waveguide feed,” IEEE Trans. Antennas Propag., vol. 43, no. 10, pp. 1143–1148, Oct. 1995.
[46]J.-F. Huang and C.-W. Kuo, “CPW-fed slot antenna with CPW tuning stub loading,” Microw. Opt. Tech. Lett., vol. 19, no. 4, pp. 257–258, Nov. 1998.
[47]S. Sierra-Garcia and J.-J. Laurin, “Study of a CPW inductively coupled slot antenna,” IEEE Trans. Antennas Propag., vol. 47, no. 1, pp. 58–64, Jan. 1999.
[48]E. Vourch, M. Drissi, and J. Citerne, “Slotline dipole fed by a coplanar waveguide,” in Proc. IEEE AP-S Int. Symp. Dig., Seattle, WA, Jun. 1994, pp. 2208–2211.
[49]W.-H. Tu and K. Chang, “Miniaturized CPW-fed slot antenna using stepped impedance resonator,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Washington, DC, Jul. 2005, pp. 351–354.
[50]Y.-C. Chen, C.-H. Hsieh, S.-Y. Chen, and P. Hsu, “Slot dipole antenna capacitively fed by CPW for dual-frequency operation,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Toronto, Canada, Jul. 2010.
[51]R. Azadegan and K. Sarabandi, “A novel approach for miniaturization of slot antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 421–429, Mar. 2003.
[52]R. Azadegan and K. Sarabandi, “Bandwidth enhancement of miniaturized slot antenna using folded, complementary and self-complementary realizations,” IEEE Trans. Antennas Propag., vol. 55, no. 9, pp. 2435–2444, Sep. 2007.
[53]K. Caekenberghe, N. Behdad, K. Brakova, and K. Sarabandi, “A 2.45-GHz electrically small slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 346–348, 2008.
[54]J.-P Chen and P. Hsu, “A miniaturized slot dipole antenna capacitively fed by a CPW with split-ring resonators,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Spokane, WA, Jul. 2011, pp. 779–781.
[55]P. Nesbitt and G. Mumcu, “A small slot dipole loaded with CRLH TL unit cells,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Spokane, WA, Jul. 2011, pp. 1032–1035.
[56]B. Ghosh, S. Haque, and D. Mitra, “Miniaturization of slot antennas using slit and strip loading,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3922–3927, Oct. 2011.
[57]W.-S. Chen, and K.-L Wong, “A coplanar waveguide-fed printed slot antenna for dual-frequency operation,” in Proc. IEEE AP-S Int. Symp., Boston, MA, Jul. 2001, pp. 140–143.
[58]D. Llorens, P. Otero, and C. Camacho-Penalosa, “Dual-band, single CPW port, planar-slot antenna,” IEEE Trans. Antenna Propag., vol. 51, no. 1, pp. 137–139, Jan. 2003.
[59]J.-S. Chen, “Dual-frequency annular-ring slot antennas fed by CPW feed and microstrip line feed,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 569–571, Jan. 2005.
[60]J.-S. Chen, “Studies of CPW-fed equilateral triangular-ring slot antennas and triangular-ring slot coupled patch antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 7, pp. 2208–2211, Jul. 2005.
[61]S. V. Shynu and M. J. Ammann, “A printed CPW-fed slot loop antenna with narrowband omnidirectional features,” IET Microw., Antennas and Propag., vol. 3, no. 4, pp. 673–680, Jun. 2009.
[62]M.-H. Yeh, P. Hsu, and J.-F. Kiang, “Analysis of a CPW-fed slot ring antenna,” in Proc. Asia-Pacific Microw. Conf., Taipei, Taiwan, Dec. 2001, pp. 1267–1270.
[63]H.-D. Chen, “Broadband CPW-fed square slot antenna with a widened tuning stub,” IEEE Trans. Antenna Propag., vol. 51, no. 8, pp. 1982–1986, Aug. 2003.
[64]L. Zhao, C.-L Ruan, and S.-W. Qu, “A novel broad-band slot antenna fed by CPW,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Albuquerque, NM, Jul. 2006, pp. 2583–2586.
[65]Y.-C. Chen, S.-Y. Chen, and P. Hsu, “A modified CPW-fed slot loop antenna with reduced cross-polarization and size,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1124–1126, 2011.
[66]K.-C. Chi, S.-Y. Chen, and P. Hsu, “Miniaturization of slot loop antenna using split-ring resonator,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Charleston, SC, Jun. 2009.
[67]M.-J. Chiang, T.-F. Hung, J.-Y. Sze, and S.-S. Bor, “Miniaturized dual-band CPW-fed annular slot antenna design with arc-shaped tuning stub,” IEEE Trans. Antennas Propag., vol. 58, no. 11, pp. 3710–3715, Nov. 2010.
[68]D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998.
[69]R. E. Collin, Foundations for Microwave Engineering, 2nd ed. New York: Wiley, 2001.
[70]H. A. Wheeler, “The spherical coil as an inductor, shield or antenna,” in Proc. IRE, vol. 46, pp. 1595–1602, Sep. 1958.
[71]R. F. Harrington, “Effect of antenna size on gain, bandwidth, and efficiency,” Journal of Research of the National Bureau of Standards, vol. 64D, pp. 1–12, Jan.–Feb., 1960.
[72]R. E. Collin and S. Rothschild, “Evaluation of antenna Q,” IEEE Trans. Antennas Propag., vol. 12, no. 1, pp. 23–27, Jan. 1964.
[73]R. L. Fante, “Quality factor of general ideal antennas,” IEEE Trans. Antennas Propag., vol. 17, no. 3, pp. 151–155, Mar. 1969.
[74]J. S. McLean, “A re-examination of the fundamental limits on the radiation Q of electrically small antennas,” IEEE Trans. Antennas Propag., vol. 44, no. 5, pp. 672–675, May. 1996.
[75]G. A. Thiele, P. L. Detweiler, and R. P. Penno, “On the lower bound of the radiation Q for electrically small antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 6, pp. 1263–1269, Jun. 2003.
[76]S. R. Best, “The radiation properties of electrically small folded spherical helix antennas,” IEEE Trans. Antennas Propag., vol. 52, no. 4, pp. 953–960, Apr. 2004.
[77]A. R. Lopez, “Fundamental limitations of small antennas: validation of Wheeler''s formulas,” IEEE Antennas Propag. Magazine, vol. 48, no. 4, pp. 28–36, Aug. 2006.
[78]Y. Geyi, P. Jarmuszewski, and Y. Qi, “The Foster reactance theorem for antennas and radiation Q,” IEEE Trans. Antennas Propag., vol. 48, no. 3, pp. 401–407, Mar. 2000.
[79]A. D. Yaghjian and S. R. Best, “Impedance, bandwidth, and Q of antennas” IEEE Trans. Antennas Propag., vol. 53, no. 4, pp. 1298–1324, Apr. 2005.
[80]S. R. Best, “Bandwidth and the lower bound on Q for small wideband antennas,” in Proc. IEEE AP-S Int. Symp. and URSI Radio Sci. Meeting, Albuquerque, NM, Jul. 2006, pp. 647-650.
[81]D. F. Sievenpiper, D. C. Dawson, M. M. Jacob, T. Kanar, S. Kim, J. Long, and R. G. Quarfoth, “Experimental validation of performance limits and design guidelines for small antennas” IEEE Trans. Antennas Propag., vol. 60, no.1, pp. 8–19, Jan. 2012.
[82]S.-Y. Chen, C.-W. Tseng, S.-C. Chiu, and P. Hsu, “Frequency-Agile, Miniaturized Slot Antenna for Hand-Held Devices,” in Proc. 2010 URSI Int. Symp. on Electromagnetic Theory, Berlin, Germany, Aug. 2010, pp. 377–380.
[83]J. Kraus and R. Marhefka, Antennas for All Applications. New York: McGraw-Hill, 2003.
[84]G. Ghione and M. Goano, “The influence of ground-plane width on the ohmic losses of coplanar waveguides with finite lateral ground planes,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1640–1642, Sep. 1997.
[85]X.-C. Lin and L.-T. Wang, “A broadband CPW-fed loop slot antenna with harmonic control,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 323–325, 2003.
[86]M. S. Ghaffarian and G. Moradi, “A novel harmonic suppressed coplanar waveguide (CPW)-fed slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 788–791, 2011.
[87]K. C. Gupta, R. Garg, I. Bahl, and P. Bharita, Microstrip Lines and Slotlines. Norwood, MA: Artech House, 1996.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔