(3.238.173.209) 您好!臺灣時間:2021/05/17 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳奕峯
研究生(外文):I-Feng Chen
論文名稱:一種應用於智慧聯網可進行封包串接之省電排程器
論文名稱(外文):A Power Saving Scheduler with Packet Concatenation for D2D Communications
指導教授:蔡志宏蔡志宏引用關係
指導教授(外文):Zse-Hong Tsai
口試委員:林宗男魏宏宇鍾耀梁
口試委員(外文):Tsung-Nan LinHung-Yu WeiYao-Liang Chung
口試日期:2013-06-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:106
中文關鍵詞:節能排程器封包串接D2D通訊智慧聯網網路選擇容量分配
外文關鍵詞:Power SavingSchedulerPacket ConcatenationD2D CommunicationInternet of ThingsNetwork SelectionCapacity Allocation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
智慧聯網,已被多方機構與研究學者預測將在未來十年內於有線與無線通訊中快速成長並成為下一代最具成長性的產業。在智慧聯網的環境中,許多裝置節點之間彼此以無線或有線通訊網路的方式連接著,形成一個區域性的網路。在許多環境中,以有線網路連接並不方便而且空間上的限制較多,因此多數裝置是以無線通訊網路連接著。然而,雖然裝置之間能透過連接彼此形成一個網路來交換資訊,但是有許多種應用仍然需要一個強而有力的數據中心來管理與處理這些節點所取得的資訊,並將資訊傳到數據中心交由專業人士進行下一步的資料分析、處理與判斷。當為數龐大的節點產生的資料量要經由無線網路再經由核心網路傳到數據中心的過程中,如何降低耗電量和降低封包虛耗比例,對電信業者而言便是很重要的關鍵。
然而,現行行動通訊網路設備的網路介面在某些時間與空間中的使用率並不高,但這些設備的網路介面仍然持續耗電著。要降低耗電量最根本的方式便是關閉這些設備,但是關閉後又可能造成許多用戶以及應用無法透過該設備傳送與接收資料而無法滿足用戶需求;另一方面,顯而易見的,當網路設備在傳送資料時的耗電量必然比閒置狀態下的耗電量高,而且研究發現,當設備每傳送一筆資料就會額外浪費一些電,稱為訊尾能量,本論文提出封包串接演算法來降低訊尾能量所造成的額外耗電並且提供各項應用一定的服務品質需求。
本論文提出一套從基地台到閘道器的通道容量分配演算法、網路選擇演算法以及封包串接演算法以期能在智慧聯網的環境之下降低網路設備的耗電量,同時也降低封包虛耗比例使單一網路設備能夠負載更大的資料傳輸量。本論文經由模擬證實,在高負載時每傳輸1 MB的耗電量約可省下46.77%,低負載時更可省下57.56%的總耗電量,並且將封包虛耗比例由29.28%降到5.5%,大幅提高傳輸效率。

Internet of things(IoT) has been predicted to grow up in wired and wireless communication and become the most popular industry in ten years. In the scenario of IoT, many devices, called D2D devices, will connect each other by wired or wireless network. It is not suitable to connect by wired network in some environment, so connecting through wireless network is familiar. However, many kind of application working on devices need a powerful data center to manage and process the information which is obtained by the D2D devices. When information has been received at the data center, professionals will analysis, process, and make some decision by the information. When huge data produced by D2D devices transmits through wireless network and core network to data center, it becomes a big issue for ISP that how to reduce power consumption and lower packet overhead.
However, current network interface cards (NIC) equipped by devices of mobile communication network are with low utilization, but these devices are continuously consuming power. The most fundamental method to lower power consumption is turning the equipment off, but it may causes that some packets can`t be routed through the equipment and many users have bad user experience. On the other hand, it is obvious that devices will consume higher power when transmitting data. According to research, devices will consume additional power when transmitting a piece of data, it is called tail energy. In this thesis, we present packet concatenation algorithm to reduce tail energy and it could provide good QoS.
In this thesis, we present channel capacity allocation algorithm, network selection algorithm, and packet concatenation algorithm to reduce power consumption of network equipments where full of IoT. At the same time, this algorithm can also reduce packet overhead, so that each network equipment can support higher data rate. Simulation results illustrate that power consumption when transmitting 1 MB can lower 46.77% of original power under high traffic load, and power consumption can reduce 57.56% of original power if under light traffic load. Inaddition, packet overhead is reduced to 5.5% from 29.28%.


誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi

第一章 緒論 1
1.1 問題的發展背景與環境 1
1.2 問題簡介與研究目標 2
1.3 相關研究 4
1.4 論文章節與架構 7
第二章 智慧聯網及行動通訊網路的發展與現況 8
2.1 智慧聯網發展與現況 8
2.1.1 智慧聯網的發展 8
2.1.2 智慧聯網的短距無線通訊技術 10
2.1.3 802.15.4 ZigBee協定 13
2.2 行動通訊網路發展與現況 15
2.2.1 第三代行動通訊系統(3G) 15
2.2.2 Long Term Evolution(LTE) 17
2.3 智慧聯網之資料傳輸模型 21
2.3.1 智慧聯網整體架構 21
2.3.2 常見的無線感測網路資料傳輸模型 24
2.4 行動晶片耗能模型 25
第三章 網路模型建構與演算法 27
3.1 網路模型建構 27
3.1.1 第三代行動通訊系統(3G)封包格式 27
3.1.2 Long Term Evolution(LTE)封包格式 29
3.1.3 802.15.4 ZigBee封包格式 29
3.1.4 網路模型之簡化與假設 30
3.1.5 現實網路佈建模型之簡化與假設 32
3.2 智慧聯網上行通道節能演算法概述 33
3.3 傳輸耗電量計算 35
3.4 封包串接與網路選擇演算法 38
3.4.1 封包串接演算法 38
3.4.2 網路選擇演算法 41
3.5 串接長度下限與暫留時間之設定 43
3.6 通道容量資源分配演算法 47
3.6.1 最低平均延遲的分配演算法 48
3.6.2 最低耗電量Heuristic分配演算法 49
3.6.3 最低耗電量最佳化的分配演算法 51
3.6.4 3G、LTE並存環境下通道容量資源分配演算法 52
3.7 小結 52
第四章 模擬結果與比較 54
4.1 模擬環境 54
4.2 不同環境下訊尾持續時間與暫留時間對耗電量之影響 55
4.2.1 不同串接長度下限下Dtail與Tholding對耗電之影響 55
4.2.2 不同資料輸入率與不同容量下Dtail與Tholding對耗電之影響 58
4.3 佇列設計與傳送模型探討 59
4.3.1 模擬情境與參數設定 62
4.3.2 暫留時間差異對耗電、延遲與頻道使用率之影響 63
4.3.3 資料輸入速率差異對耗電、延遲與頻道使用率之影響 67
4.3.4 三種不同佇列與傳送模型探討與結論 71
4.4 單一網路情況下不同容量資源分配方式對耗電量之影響 72
4.4.1 模擬情境與參數設定 72
4.4.2 各種不同容量資源分配方式探討與比較 74
4.4.3 現實情境模擬 78
4.4.4 各種不同容量資源分配方式小結 79
4.5 3G與LTE網路環境下多串接器的模擬結果 79
4.5.1 參數與環境設定 79
4.5.2 模擬結果探討與比較 82
4.5.3 現實情境模擬 86
4.5.4 模擬結果小結 87
第五章 結論與未來展望 89
5.1 結論 89
5.2 未來研究方向 90
參考文獻 91
附錄1 關鍵名詞中英對照表 97
附錄2 4.2.2模擬詳細結果 98

[1]Z.M. Fadlullah et al., “Toward Intelligent Machine-to-Machine Communications in Smart Grid,” IEEE Comm. Magazine, Volume 49, Issue 4, pp.60-65, Apr. 2011.
[2]中華民國行政院科技顧問組, 智慧聯網發展趨勢與我國產業政策, 2011.
[3]M. Pickavet et al., “Worldwide Energy Needs for ICT: the Rise of Power-Aware Networking,” in Proc. of IEEE ANTS Conference, Bombay, India, Dec. 2008.
[4]C. Panarello, A. Lombardo, G. Schembra, L. Chiaraviglio, and M. Mellia, “Energy saving and network performance: a trade-off approach,” in Proc. of ACM 1st International Conference on Energy-Efficient Computing and Networking (e-Energy ’10), pp. 41–50, New York, Apr. 2010.
[5]N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile phones: a measurement study and implications for network applications,” in Proc. of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, New York, Nov. 2009.
[6]Z.H. Tsai, W.D. Wang, C.H. Chiou, J.F. Chang, and L.S. Liang, “Performance Analysis of Two Echo Control Designs in ATM Networks,” IEEE Transaction on Networking, Volume 2, Issue 1, pp.30-39, Feb. 1994.
[7]N.A. Al-Saber et al., “Concatenating Packets in Variable- Length Input-Queued Packet Switches with Cell-Based and Packet- Based Scheduling,” IEEE Sarnoff Symposium, Pricenton, New Jersey, Apr. 2008.
[8]L. Cai, R.Rojas-Cessa, and T. Kijkanjanarat, “Avoiding Speedup from Bandwidth Overhead in a Practical Output-Queued Packet Switch,” in Proc. of 2011 IEEE International Conference on Communications (ICC), pp.5-9, Kyoto, Japan, Jun. 2011.
[9]D. Kliazovich and F. Granelli, “On Packet Concatenation with QoS support for Wireless Local Area Networks,” in Proc. of IEEE International Conference on Communication (ICC) 2005, Seoul, South Korea, May 2005.
[10]H. Zhai and Y. Fang, “A Distributed Packet Concatenation Scheme for Sensor and Ad Hoc Networks,” in Proc. of IEEE MILCOM 2005, Atlantic, NJ, Oct. 2005
[11]W.C. Hong and Z.H. Tsai, “A Multichannel Scheduler for High-Speed Wireless Backhaul Links with Packet Concatenation,”IEEE Transactions on Mobile Computing, Volume 9, Issue 2, pp. 201-214, Feb. 2010.
[12]B. Bates, A. Keating, and R. Kinicki, “Energy Analysis of Four Wireless Sensor Network MAC Protocols,” in Proc. of 2011 6th International Symposium on Wireless and Pervasive Computing (ISWPC), Hong Kong, China, Feb. 2011.
[13]D. Luo, X. Zhu, X. Wu, and G. Chen, “Maximizing Lifetime for the Shortest Path Aggregation Tree in Wireless Sensor Networks,” in Proc. of IEEE INFOCOM 2011, Shanghai, China, Apr. 2011.
[14]H.L. Fu et al, “Energy-Efficient Reporting Mechanisms for Multi-Type Real-time Monitoring in Machine-to-Machine Communication Networks,” in Proc. of IEEE INFOCOM 2012, Orlando, FL, Mar. 2012.
[15]K. Doppler, C.B. Ribeiro, and J.Kneckt, “Advances in D2D Communication: Energy Efficient Service and Device Discovery Radio,” in Proc. of 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), Chennai, India, Mar. 2011.
[16]X. Xiao, X. Tao, and J. Lu, “A Qos-Aware Power Optimization Scheme in OFDMA Systems with Integrated Device-to-Device(D2D) Communication,” in Proc. of 2011 IEEE Vehicular Technology Conference (VTC Fall), San Francisco, Sep. 2011.
[17]G. Fodor et al., “Design Aspects of Network Assisted Device-to-Device Communications,” IEEE Communications Magazine, Volume 50, Issue 3, pp.170-177, Mar. 2012.
[18]K. Dopper et al., “Device-to-Device Communication as an Underlay to LTE-Advandced Nteworks,” IEEE Communication Magazine, Volume 47, Issue 12, pp.42-49, Dec. 2009.
[19]Wikipedia, Internet of Things,
http://en.wikipedia.org/wiki/Internet_of_Things
[20]ITU, ITU Internet Reports 2005: The Internet of Things, Nov. 2005.
[21]K. Yang and Z.Y. Zhang, “Summarize on Internet of Things and Exploration into Technical System Framework,” in Proc. of 2012 IEEE Symposium on Robotics and Applications (ISRA), Kuala Lumpur, Malaysia, Jun. 2012.
[22]A. Iera, C. Floerkemeier, J. Mitsugi, and G.Morabito, “The Internet of Things,” IEEE Wireless Communication Magazine, Volume 17, Issue 6, pp.8-9, Dec. 2010.
[23]Wikipedia, Machine to Machine,
http://en.wikipedia.org/wiki/Machine_to_machine
[24]馮明惠、吳瑞明、王家淇, 智慧聯網-繼網際網路之後的新一波發展主流, 資策會網路通訊國家型科技計畫簡訊, Jul. 2011.
[25]Qualcomm, IEEE 802.11ac: The Next Evolution of Wi-FiTM Standards, May 2012.
[26]Bluetooth, Specfication of The Bluetooth System-Bluetooth Core Specification Addendum 4, Feb. 2013.
[27]Bluetooth, Specfication of The Bluetooth System-Master Table of Contents & Compliance Requirements, Jun. 2010.
[28]ZigBee Aliance, ZigBee Specification, Jan. 2008.
[29]ZigBee Aliance, ZigBee IP Specification, Feb. 2013
[30]J.S Lee, Y.W Su, and C.C. Shen, “A Comparative Study of Wireless Protocols-Bluetooth, UWB, ZigBee, and Wi-Fi,” in Proc. of the 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), Taipei, Taiwan, Nov. 2007.
[31]D. Niyato, L. Xiao, and P. Wang, “Machine-to-Machine Communications for Home Energy Management System in Smart Grid,” IEEE Comm. Magazine, Volume 49, Issue 4, pp.53-59, Apr. 2011.
[32]S.M. Cheng and C.H. Gan, Key Issues and Technologies for UMTS High Speed Downlink Packet Access, Bulletin of the College of Engineering, National Taiwan University, no.90, pp.57-63, Feb. 2004.
[33]3GPP, http://www.3gpp.org/
[34]3GPP TR 25.825 (V1.0.0), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Dual-Cell HSDPA operation, May. 2008.
[35]Qualcomm, HSPA+ for Enhanced Mobile Broadband, 2009
[36]L.M. Correia, et. al, “Performance Analysis of UMTS/HSPA at the Cellular Level,” in Proc. of IEEE 69th Vehicular Technology Conference, Barcelona, Spain, Apr. 2009.
[37]Wireless Communication Jean Paul Linnartz’ Reference Website , http://www.wirelesscommunication.nl/reference/about.htm
[38]Anritsu, LTE_Reource_Guide, May 2011.
[39]F. Khan, LTE for 4G Mobile Broadband. Cambridge, U.K.: Cambridge University Press, pp.175, 2009.
[40]Ericsson, LTE Release 12 and Beyond, 5th International Workshop LTE-Advanced and Beyond, Sep. 2012.
[41]Ericsson, LTE Release 12-Taking Another Step Toward The Netowrked Society, Ericsson White Paper, Jan. 2013.
[42]陳文瑞, 智慧電網之先進讀表發展與應用, 資策會 網路多媒體研究所
[43]W. Mardini, Y. Khamayseh, R. Jaradatand and R. Hijjawi, “Interference Problem between ZigBee and WiFi,” in Proc. of 2012 IACSIT Hong Kong Conferences, Singapore, Feb. 2012.
[44]T. R. Burchfield, S. Venkatesan, and D. Weiner, "Maximizing throughput in ZigBee wireless networks through analysis, simulations and implementations," in Proc. Int. Workshop Localized Algor. Protocols WSNs, pp.15-29, Santa Fe, NM, Jun. 2007.
[45]C. Wang et al.,“Voice Communications over ZigBee Networks,” IEEE Comm. Magazine, Volume 46, Issue 1, pp.121-127, Jan. 2008.
[46]F. Aalamifar, Viability of Powerline Communication for Smart Grid Realization, Queen’s University Master Thesis, Apr. 2012.
[47]W. Luan, D. Sharp, and S. Lancashire, “Smart Grid Communication Network Capacity Planning for Power Utilities,” in Proc. of IEEE PES, New Orleans, Louisiana, pp.19-22, Apr. 2010.
[48]藍健瑋, 針對社群網路應用在平板電腦上的省電機制, 國立台灣大學碩士論文, Jun. 2012.
[49]3GPP TS 25.321 V7.0.0 (2006-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Medium Access Control (MAC) protocol specification (Release 7).
[50]3GPP TS 25.322 V7.0.0 (2006-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Radio Link Control (RLC) protocol specification (Release 7).
[51]3GPP TS 25.321 V8.0.0 (2007-12), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Medium Access Control (MAC) protocol specification (Release 8).
[52]3GPP TS 25.322 V8.0.0 (2007-12), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Radio Link Control (RLC) protocol specification (Release 8).
[53]Z.H. Tsai, Wireless Network Solutions for the Smart Grid Initiative (Presentation Slides), Network Communication Program.
[54]D. Bertsekas, and R. Gallager, Data Network 2nd Edition, Prentice-Hall, 1992.
[55]A.A. Rasheed, S. Wager, and E. Ab, “Cell Range Extension in LTE In-band Relays: Analysis of Radio Link, Subframe Allocation and Protocol Performance of FTP Traffic Model,” in Proc. of 18th European Wireless Conference (2012 EW), pp.1-6, Poznań, Poland, Apr. 2012.
[56]ABI Research Study, 3G Machine-To-Machine (M2M) Communications, May 2007.
[57]Cisco white paper, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012–2017, Feb. 2013.
[58]M. Hatton, Realizing the potential of the Connected Life, GSMA, Oct. 2011
[59]國家通訊傳播委員會, 第三代行動通信業務營運概況, Apr. 2013.
http://www.ncc.gov.tw/Chinese/news.aspx?site_content_sn=2798
[60]台灣電力公司, 電價表(低壓供電).
http://www.taipower.com.tw/content/q_service/images/main_3_6_4.pdf
[61]國家通訊傳播委員會, 頻率資料庫查詢系統.
http://freqdbo.ncc.gov.tw/Portal/NCCB06Q_01v1.aspx


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top