(3.236.214.19) 您好!臺灣時間:2021/05/10 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊星瀚
研究生(外文):Sin-Han Yang
論文名稱:互補金氧半導體多級差動式振盪器能量結合信號源
論文名稱(外文):CMOS Multiple-Element Differential Power-Combining Oscillators
指導教授:莊晴光
指導教授(外文):Ching-Kuang Clive Tzuang
口試委員:許博文蔡智明王紳陳怡然陳毓喬
口試委員(外文):Powen HsuChihming TsaiSen WangYi-Jan ChenYu-Chiao Chen
口試日期:2013-02-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:90
中文關鍵詞:平衡不平衡轉換器互補式金氧半積體電路耦合線微波振盪器能量結合技術
外文關鍵詞:BalunCMOS integrated circuitscoupled linesmicrowave oscillatorspower-combining techniques
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一個在K-頻段的能量結合結構。此結構是以多個馬爾尚平衡不平衡轉換器(Marchand balun)形成的區段以串聯的方式組成並能夠結合多組平衡信號到一個不平衡信號。另外以主動元件組成的電晶體交叉耦合對(cross-coupled pair)結合此多個平衡不平衡轉換器結構形成了多級差動式振盪器能量結合信號源。此中能量結合的機制使用了Y和S參數來分析探討。此多級差動式振盪器實作在0.13微米的互補式金氧半導體製程技術,展現了整合於單質晶片的能力。一個電晶體交叉耦合對和兩個的設計都有進行量測,最佳量測結果顯示達成了76.0%的能量結合效率。
此能量結合效率是藉由比較一個單元的設計和兩個單元的振盪器設計而來。一個單元的設計振盪頻率操作在25.29 GHz,輸出能量為3.32 dBm,直流轉無線電頻率效率16.96%,其核心電路大小為280 um × 230 um. 二個單元的設計振盪頻率操作在25.56 GHz,輸出能量為5.14 dBm,直流轉無線電頻率效率12.03%,其核心電路大小為280 um × 430 um。
在第二章進行能量結合結構被動元件部分的分析。本文提出的能量結合結構是以多區段的耦合傳輸線結合,因此耦合傳輸線的對稱和非對稱模型在這裡探討並討論其在互補式金氧半導體技術中的使用方式。互補式金氧半導體合成傳輸線也在此章進行討論。而基於傳輸線模型的Y和S參數分析了證明此結構中每個單元形成的延伸埠馬爾尚平衡不平衡轉換器的功能,再藉此證明提出的能量結合結構確實能結合多對差動信號的能量。同時在此結構中達成能量結合時的狀態條件,是跟延伸振盪技術(extended resonance technique)中展示的為同樣的條件。
第三章探討提出的能量結合結構聯結主動元件而形成的多級差動式振盪器設計。首先證實了在此結構中,主動元件組成的電晶體交叉耦合對的小信號能量結合是可行的。另外使用了簡化模型來探討此多級差動式振盪器能量結合信號源的振盪條件和相對應的設計參數。
本篇論文發展的分析方法可以預測當傳輸線的品質因素(quality factor)提高時,此結構的能量結合效率同時會有提升。將此能量結合結構興其他已發表之多級振盪器能量結合信號源一同比較,可以發現本篇論文提出的振盪器在直流轉無線電頻率效率和電路的縮小化上都具有優勢。此結構展現了在單晶積體電路中與其他元件整合並且能夠產生高能量輸出的能力。


A power combining structure at K-band is proposed. The proposed structure, consisted of multi-section of Marchand baluns in series configuration, combines multiple pairs of balanced signals into a single unbalanced port. The active devices, in differential cross-coupled pair configuration, are then combined with the multi-balun structure forming the multiple element oscillator. The power combining mechanism is investigated through Y- and S-parameters. The power combination oscillators are implemented in 0.13-um complementary-metal-oxide-semiconductor (CMOS) technology, demonstrating the ability of monolithic integration. One and two cross-coupled-pair design of oscillator are measured. Experiment results for the oscillators are presented, showing maximum power combining efficiency of 76.0%.
The power combining efficiency is obtained by comparing the one- and two-cell design of oscillator. For the one-cell design, the oscillation frequency is 25.29 GHz and the output power is 3.32 dBm with high DC-to-RF efficiency of 16.96%. The core area of the circuit is 280 um × 230 um. For the two-cell design, the oscillation frequency is 25.56 GHz and the output power is 5.14 dBm with high DC-to-RF efficiency of 12.03%. The core area of the circuit is 280 um × 430 um.
The analysis of the passive part of the combining structure shows in Chapter 2. The proposed power-combining structure is composed of multi-section of coupled lines. The symmetric and asymmetric coupled-lines models are discussed and used in the CMOS technology. The CMOS synthetic transmission line also called complementary- conducting-strip transmission lines (CCS TLs) is discussed. The analysis of the proposed structure using Y- and S-parameters shows the power-combining of multi-pair differential signal. The extended-port Marchand balun is presented as the unit-cell of the proposed power-combining structure. The same power-combining conditions comparing to extended resonance technique are mentioned.
Chapter 3 presents the combination of the power-combining structure with active devices forming the multiple-element oscillator. The small-signal power-combining of the active cross-coupled-pair circuit is present, firstly. The oscillation conditions and design parameters of the power-combining oscillators are analyzed by using the simplified models of the circuits.
The methodology developed in this dissertation predicts that higher power combining efficiency can be achieved by using transmission lines of higher Q-factor. Compared with published multiple-element power-combining oscillators, the proposed oscillators have high DC-to-RF efficiency and small circuit sizes. This structure presents abilities of high output power and integration with other monolithic integrated circuit components.


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Introduction of Previous Works 3
1.3 Contributions of This Dissertation 5
1.4 Organization of This Dissertation 7
Chapter 2 Differential Power Combining Structure 9
2.1 Coupled Transmission Lines and Planar Marchand Balun 9
2.1.1 Coupled-line Model and CMOS Synthetic Transmission Line 9
2.1.2 Planar Marchand Balun 14
2.2 The Proposed Architecture 16
2.3 Analysis of the 4-port Extended Marchand Balun 18
2.4 Derivation of Differential Power Combining Structure 26
2.5 Operation Principle of the Proposed Power Combining Structure 38
Chapter 3 The Proposed Multiple-Element Power Combining Oscillator 42
3.1 Small-Signal Analysis of the Cascade Differential Power Combining for Active Devices 42
3.2 Analysis of the Oscillators 46
3.2.1 Analysis of One-Cell Oscillator Design 47
3.2.2 Analysis of Two-Cell Oscillator Design 50
Chapter 4 Implementation and Measurement 53
4.1 Implementation and Performance of the Oscillators 53
4.2 The Harmonics of Oscillators 62
4.3 Comparison to Other Multi-Element Power-Combining Oscillators 67
Chapter 5 Conclusion 69
5.1 Summary 69
5.2 Suggestion for Future Research 70
Appendix A Derivation of the Y- and S-matrix of Extended-Port Marchand Balun
72
Appendix B Derivation of the ABCD Parameters of the Unit Cell with Active Devices 80
REFERENCE 84
Publication List 90



[1]K. Chang and C. Sun, “Millimeter-wave power-combining techniques,” IEEE Trans. Microw. Theory Tech., vol. MTT-31, no. 2, pp. 91-107, Feb. 1983.
[2]K. J. Russell, “Microwave power combining techniques,” IEEE Trans. Microw. Theory Tech., vol. MTT-27, no. 5, pp. 472-478, May 1979.
[3]M. Koch, J. V. Rudd, R. Neelamani, M. Gupta, R. G. Baraniuk and D. M. Mittleman, “Recent advances in terahertz imaging,” Appl. Phys. B, vol. 68, no. 6, pp. 1085-1094, Apr. 1999.
[4]P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 10, pp. 2438-2447, Oct. 2004.
[5]Kenneth K. O., “Affordable terahertz technology,” IEEE Microw. Mag., pp. 113-116, May, 2009.
[6]K. Kurokawa and F. M. Magalhaes, “An X-band 10-Watt multiple-IMPATT oscillator,” Proc. IEEE, vol. 59, no. 1, pp. 102-103, Jan. 1971.
[7]K. Kurokawa, “The single-cavity multiple-deivce oscillator,” IEEE Trans. Microw. Theory Tech., vol. MTT-19, no. 10, pp. 793-801, Oct. 1971.
[8]S. Nogi and K. Fukui, “Optimum design and performance of a microwave ladder oscillator with many diode mount pairs,” IEEE Trans. Microw. Theory Tech., vol. MTT-30, no. 5, pp. 735-743, May 1982.
[9]R. S. Harp and H. L. Stover, “Power combining of X-band IMPATT circuit modules,” in IEEE-ISSCC Dig. Tech. Papers, vol. XVI, Feb. 1973, pp. 118-119.
[10]C. T. Rucker, “A multiple-diode high-average power oscillator,” IEEE Trans. Microw. Theory Tech., vol. MTT-17, pp. 1156-1158, Dec. 1969.
[11]A. Mortazawi and T. Itoh, “A period planar Gunn diode power combining oscillator,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 1, pp. 86-87, Jan. 1990.
[12]A. Dupuy, K. M.K.H Leong, and T. Itoh, “Power combining tunnel diode oscillators using metamaterial transmission line at infinite wavelength frequency,” in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 751-754.
[13]A. Mortazawi and B. C. De Loach, Jr., “Multiple element oscillators utilizing a new power combining technique,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp. 2397-2402, Dec. 1992.
[14]K. S. Ang, S. Nam, and I. D. Robertson, “A millimeter-wave monolithic power combining oscillator using the extended resonance technique,” in 29th Eur. Microw. Conf., 1999, pp. 194-197.
[15]J. W. Mink, “Quasi-optical power combining of solid-state milli- meter-wave sources,” IEEE Trans. Microw. Theory Tech., vol. MTT-34, no. 2, pp. 273-279, Feb. 1986.
[16]R. A. York, P. Liao, and J. J. Lynch, “Oscillator array dynamics with broadband N-port coupling networks,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 11, pp. 2040-2045, Nov. 1994.
[17]J. Birkeland, and T. Itoh, “A 16 element quasi-optical FET oscillator power combining array with external injection locking,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 3, pp. 475-481, Mar. 1992.
[18]R. A. York and R. C. Compton, “Quasi-optical power-combining and phased arrays,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 6, pp. 1000-1009, Jun. 1991.
[19]N. Marchand, “Transmission line conversion transformers,” Electronics, vol. 17, no.12, pp. 142-145, Dec. 1944.
[20]G. Oltman, “The compensated balun,” IEEE Trans. Microw. Theory Tech., vol. MTT-14, no. 3, pp. 112-119, Mar. 1966.
[21]C. M. Tsai and K. C. Gupta, “A generalized model for coupled lines and its applications to two-layer planar circuits,” IEEE Trans. Microw. Theory Tech., vol. 40, no.12, pp. 2190-2199, Dec. 1992.
[22]M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “Artificial synthesized edge-coupled transmission lines for compact CMOS directional coupler design,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3410-3417, Dec. 2009.
[23]K.-H. Tsai and C.-K. C. Tzuang, “Mode symmetry analysis and design of CMOS synthetic coupled transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 1947-1954, Aug. 2011.
[24]A. M. Pavio and A. Kikel, “A monolithic or hybrid broadband compensated balun,” in IEEE MTT-S Int. Microw. Symp. Dig., 1990, pp. 483–486.
[25]M. N. Tutt, H. Q. Tserng, and A. Ketterson, “A low loss, 5.5 GHz-20 GHz monolithic balun,” in IEEE MTT-S Int. Microw. Symp. Dig., 1997, pp.933-936.
[26]C.-W. Tang, and C.-Y. Chang, “A semi-lumped balun fabricated by low temperature co-fired ceramic,” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 2201-2204.
[27]M.-C. Tsai, “A new compact wideband balun,” in IEEE MTT-S Int. Microw. Symp. Dig., 1993, pp.141-143.
[28]Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 182-184, Apr. 1999.
[29]S.-C. Tseng, C. Meng, C.-H. Chang, C.-K. Wu, and G.-W. Huang, “Monolithic broadband Gilbert micromixer with an integrated Marchand Balun using Standard Silicon IC Process,” IEEE Trans. Microw. Theory and Tech., vol. 54, no.12, pp. 4362-4371, Dec. 2006.
[30]M.-J. Chiang, H.-S. Wu, C.-K. C. Tzuang, “A compact CMOS Marchand balun incorporating meandered multilayer edge-coupled transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 125-128.
[31]R. Schwindt and C. Nguyen, “Computer-aided analysis and design of a planar multilayer marchand balun,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 7, pp. 1429-1434, Jul. 1994.
[32]Y. C. Leong, K. S. Ang, and C. H. Lee, “A derivation of a class of 3-port baluns from symmetrical 4-port networks,” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 1165–1168.
[33]K. S. Ang and I. D. Robertson, “Analysis and design of impedance-trans- forming planar Marchand Balun,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 402-406, May 2001.
[34]Z.-Y. Zhang, Y.-X. Guo, L. C. Ong, and M. Y. W. Chia, “A new planar Marchand Balun,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 1207–1210.
[35]E. M. T. Jones and J. T. Bolljahn, “Coupled-strip-transmission-line filters and directional couplers,” IRE Trans. Microw. Theory Tech., vol. 4, no. 2, pp. 75-81, Apr. 1956.
[36]G. I. Zysman and A. K. Johnson, “Coupled transmission line networks in an inhomogeneous dielectric medium,” IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 10, pp. 753-759, Oct. 1969.
[37]V. K. Tripathi, “Asymmetric coupled transmission lines in an inhomogeneous medium,” IEEE Trans. Microw. Theory Tech., vol. 23, no. 9, pp. 734-739, Sep. 1975.
[38]D. M. Pozar, Microwave Engineering, 3rd ed. Hoboken, NJ: Wiley, 2005, pp. 337-349.
[39]C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1637-1647, Jun. 2004.
[40]M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2512–2520, Dec. 2007.
[41]S.-H. Yang, K.-H. Tsai and C.-K. C. Tzuang, “Characteristic impedance calculation of CMOS synthetic transmission line using adaptive neuro-fuzzy inference system,” in Proc. Asia–Pacific Microw. Conf., Melbourne, VIC, Dec. 2011, pp. 805-808.
[42]S. Wang, K.-H. Tsai, K.-K. Huang, S.-X. Li, H.-S. Wu, and C.-K. C. Tzuang, “Design of X-band RF CMOS transceiver for FMCW monopulse radar,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 61–70, Jan. 2009.
[43]Y.-H. Wu, M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “24-GHz 0.18-um CMOS four-stage transmission line-based amplifier with high gain-area efficiency,” in Proc. Asia–Pacific Microw. Conf., Dec. 16–20, 2008, pp. 1–5.
[44]K.-K. Huang, M.-J. Chiang, and C.-K. C. Tzuang, “A 3.3 mW K-band 0.18-um 1P6M CMOS active bandpass filter using complementary current-reuse pair,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 94–96, Feb. 2008.
[45]M. L. Lee, H. S. Wu, and C. K. C. Tzuang, “1.58 GHz third-order CMOS active bandpass filter with improved passband flatness,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 9, pp. 2275–2284, Sep. 2011.
[46]L. Su and C.-K. C. Tzuang, “A narrowband CMOS ring resonator dual-mode active bandpass filter with edge periphery of 2% free-space wavelength,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1605–1616, Jun. 2012.
[47]A. L. Martin, A. Mortazawi, and B. C. De Loach, Jr., “An eight-device extended-resonance power-combining amplifier,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 6, pp. 844-850, Jun. 1998.
[48]X. Jiang and A. Mortazawi, “A broadband power amplifier design based on the extended resonance power combining technique,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 835-838.
[49]K. C. Gupta, R. Garg, and R. Chadha, Computer-Aided Design of Microwave Circuits, Dedham, MA: Artech House, 1981, pp. 35.
[50]J. A. Dobrowolski, Microwave Network Design Using the Scattering Matrix, Norwood, MA: Artech House, 2010, pp. 85-86.
[51]T. Ohira, “Rigorous Q-factor formulation for one- and two-port passive linear networks from an oscillator noise spectrum viewpoint,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 846-850, Dec. 2005.
[52]U. L. Rohde, A. K. Poddar, and G. Böck, The Design of Modern Microwave Oscillators for Wireless Applications: Theory and Optimization. Hoboken, NJ: Wiley, 2005, pp. 509-515.
[53]E. L. Holzman, Solid-State Microwave Power Oscillator Design. Norwood, Ma: Artech House, 1992, ch. 5.
[54]D. M. Pozar, Microwave Engineering, 3rd ed. Hoboken, NJ: Wiley, 2005, pp. 183-187.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔