(3.238.99.243) 您好!臺灣時間:2021/05/15 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇揚鈞
研究生(外文):Yang-Chun Su
論文名稱:利用Wi-Fi CSI作精細室內定位
論文名稱(外文):Exploiting Wi-Fi CSI for Fine-Grained Indoor localization
指導教授:黃寶儀黃寶儀引用關係
指導教授(外文):Polly Huang
口試委員:陳伶志朱浩華藍崑展
口試日期:2013-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:73
中文關鍵詞:Wi-Fi精密室內定位通道狀態訊息
外文關鍵詞:Wi-FiFine grained Indoor LocalizationChannel State Information
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
最近, 利用Wi-Fi 做室內定位的技術變得更加引人關注, 因為利用廣泛被佈置的Wi-Fi系統可以減少系統在硬體建置的負荷, 此外, 有先前的研究驗證使用Wi-Fi在正交分頻調變(Orthogonal frequency-division multiplexing, OFDM) 運作下的精密評估資訊, 也就是通道狀態訊息(Channel State Information, CSI), 用以作為位置指紋比傳統以接收訊號強度(RSSI)更具代表性。這篇論文中, 將會分享關於利用學校已建置的Wi-Fi系統去實作一個以通道狀態訊息為基礎的定位系統。
我們的系統包含了「指紋資料庫」和「位置評估系統」兩個部分。因為在我們的測試環境中可以明顯觀察到多個不同的通道狀態訊群,所以我們利用K-means 演算法分群,並保留每個探勘點的多個指紋在「指紋資料庫」中。
因為精密的通道狀態訊息是以高維度的向量呈現,所以我們利用一種統計模型R平方數 (R-square value) 來做指紋比對。除了單一通道狀態訊息封包的比對測試方法之外,文中也提供一個可以達到更高定位精準度的多通道狀態訊息封包的比對測試方法。同時為了避免受到易受位置影響的通道狀態訊息而導致的誤判, 亦提供了一個可行的權重投票估計機制。最後我們顯示系統的評估結果, 也可以看到我們的系統表現比傳統利用接收訊號強度實作的系統突出。


Nowadays, Wi-Fi-based indoor localization techniques have become attractive, because widely deployed Wi-Fi system could reduce the overhead of infrastructure. Moreover, some prior works argue that Wi-Fi OFDM-based fine-grained estimation data, Channel State Information (CSI), is more representative than traditional RSSI as location fingerprints. In this paper, we shared the experience of utilizing the school built-in Wi-Fi system to build a CSI-based localization system.
Our system includes “Fingerprint Database” and “Localization System.” Due to multiple obvious CSI clusters could be observed in our testbed, we utilize K-means algorithm to retain multiple fingerprints for each survey point in our “Fingerprint Database”.
Because fine-grained CSI are high-dimension vectors, a statistical module (i.e., R-square value) is proposed for fingerprint comparison. Not only Single-CSI comparison, but also a Multiple-CSI comparison testing method is also proposed, which reaches higher accuracy. To reduce the location misjudgment caused by location sensitive CSI, a feasible weighted voting estimation process is also proposed. Finally, we evaluate our system in our testbed and show our system outperforms traditional RSSI-based localization system.


口試委員審定書 1
誌謝 2
摘要 3
ABSTRACT 5
CONTENTS 7
LIST OF FIGURES 11
LIST OF TABLES 14
CHAPTER 1 INTRODUCTION 15
CHAPTER 2 RELATED WORK 19
CHAPTER 3 CHANNEL STATE INFORMATION 25
3.1 Preliminaries 25
3.1.1 OFDM Technology 25
3.1.2 Frequency-Selective Fading 26
3.1.3 Channel State Information Grouping 27
3.2 CSI Observation 28
3.2.1 CSI Vector 28
3.2.2 R-Square Value 29
3.2.3 Stability Experiment 30
CHAPTER 4 FINGERPRINTING DATABASE 34
4.1 Fingerprint Database Generation 34
4.1.1 Cluster Strategy Decision 35
4.1.2 Fingerprint Database 39
CHAPTER 5 IMPLEMENTATION 41
5.1 Channel State Information Collection 41
5.1.1 Hardware Setup 41
5.1.2 Software Setup 42
5.2 Infrastructure 43
5.3 Localization Algorithm 44
5.3.1 Clustering & Data Processing Block 45
5.3.2 Fingerprint Comparison Block 46
5.3.3 Weighted Voting Estimation 49
CHAPTER 6 EVALUATION 51
6.1 Experimental Scenario 51
6.1.1 Experiment Environment 52
6.1.2 Experiment Methods 54
6.1.3 Evaluation Matrix 55
6.2 Performance Evaluation 55
6.2.1 Self-Testing 55
6.2.2 Daily Traces Localization Evaluation 56
6.2.3 Weighted Voting Estimation Evaluation 61
6.3 RSSI-based Localization System Comparison 62
6.3.1 RSSI-based Localization Mechanism 62
6.3.2 Performance Comparison 63
6.4 Comparison between our system and FIFS 64
6.4.1 FIFS System vs. our system 64
6.4.2 FIFS System Evaluation 65
CHAPTER 7 CONCLUSION & DISCUSSION 67
REFERENCE 70


[1]Nissanka B. Priyantha, Anit Chakraborty and Hari Balakrishnan, “The Cricket Location-Support System,” in Proc. of MobiCom, 2000
[2]Lionel M. Ni, Y. Liu, Y. Lau and A. Patil, “LANDMARC: Indoor Location Sensing Using Active AFID,” in Proc. of PerCom, 2003
[3]M. Youssef and A. Agrawala, “The Hours WLAN Location Determination System,” in Proc. of MobiSys, 2005
[4]P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-based User Location and Tracking System,” in Proc. of InfoCom, 2000
[5]Daniel Halperin, Wenjun Hu, Anmol Sheth and David Wetherall, “Tool Release: Gathering 802.11n Traces with Channel State Information” in Proc. of SIGCOMM, 2011
[6]Souvik Sen, Bozidar Radunovic, Tom Minka and Romit Roy Coudhury, “Spot Localization using PHY Layer Information,” in Proc. of MobiSys, 2012
[7]IEEE Std. 801.11n-2009: Enhancements for higher throughput, http://www.ieee802.org
[8]Jiang Xiao, Kaishun Wu, Youwen Yi and Lionel M. Ni, “FILA: Fine-grained Indoor Localization,” in Proc. of InfoCom, 2012
[9]Jiang Xiao, Kaishun Wu, Youwen Yi and Lionel M. Ni, “FIFS: Fine-grained Indoor Fingerprinting System,” in Proc. of ICCCN, 2012
[10]Eiman Elnahrawy, Xiaoyan Li and Richard P. Martin, “The Limits of Localization Using Signal Strength: A Comparative Study,” in Proc. of SECON, 2004
[11]Tsung-Han Lin, I-Hei Ng, Seng-Yong Lau, Kuang-Ming Chen and Polly Huang, “A Microscopic Examination of an RSSI-Signature Based Indoor Localization System,” in Proc. of HotEmNets, 2010
[12]Mu Zhou, Prashant Krishnamurthy, Yubin Xu and Lin Ma “Physical Distance Vs Signal Distance An Analysis Towards Better Location Fingerprinting,” in Proc. of HPCC, 2011
[13]Andreas Teuber, Bernd Eissfeller and Thomas Pany, “A Two-Stage Fuzzy Logic Approach for Wireless LAN Indoor Positioning,” in Proc. of IEEE/ION Position Location Navigat. Symp., 2006
[14]Mauro Brunato and Roberto Battiti, “Statistical Learning Theory for Location Fingerprinting in Wireless LANs,” in Prob. of the International Journal of Computer and Telecommunications Networking, 2005
[15]Roberto Battiti, Alessandro Villani and Thang Le Nhat, “Neural network models for intelligent networks deriving the location from signal patterns,” in Proc. of AINS, 2002
[16]Radio Design for MIMO Systems with an Emphasis on IEEE 80211, http://sites.ieee.org/
[17]Xiaofan Jiang, Chieh-Jan Mike Liang, Kaifei Chen, Ben Zhang, Jeff Hsu, Bin Cao and Feng Zhao, “Design and Evaluation of a Wireless Magnetic-based Proximity Detection Platform for Indoor Applications,” in Proc. of IPSN, 2012
[18]Chun-Chieh Hsiao, Yi-Jing Sung, Seng-Yong Lau, Chia-Hui Chen, Fei-Hsiu Hsiao, Hao-Hua Chu and Polly Huang, “Towards Long-Term Mobility Tracking in NTU Hospital’s Elder Care Center,” in Proc. of PerCom, 2011
[19]Alessandro Redondi, Marco Tagliasacchi, Matteo Cesana, Luca Borsani, Paula Tarrio and Fabio Salice, “LAURA - LocAlization and Ubiquitous monitoRing of pAtients for health care support,” in Proc. of APLEC, 2010
[20]Rui Zhang, Fabian Hoflinger and Leonhard Reindl, “Inertial Sensor Based Indoor Localization and Monitoring System for Emergency Responders,” in Proc. of IEEE Sensors Journal, 2013
[21]Hajime Suzuki, Thi Van Anh Tran and lain B.Collings, “Characteristics of MIMO-OFDM Channel in Indoor Environments,” in Proc. of EURASIP Journal, 2007
[22]Jishu DasGupta, Karla Ziri-Castro and Ron Addie, “Time variation characteristics of MIMO-OFDM broadband channels in populated indoor environments,” in Proc. of LAPC, 2011


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top