(3.238.96.184) 您好!臺灣時間:2021/05/12 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳思詠
研究生(外文):Szu-Yung Chen
論文名稱:群游策略對於魚類游動性能及節能之影響
論文名稱(外文):An Investigation of the Energy-Saving Mechanism in Fish School
指導教授:楊鏡堂楊鏡堂引用關係
口試委員:宋齊有牛仰堯紀凱容吳宗信
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:110
中文關鍵詞:逆卡門渦漩節能機制空間排列群魚
外文關鍵詞:fish schoolenergy-saving mechanismspatial optimizationvortex structurelow-pressure kernel
相關次數:
  • 被引用被引用:4
  • 點閱點閱:312
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以群游現象鮮明之泰國鯽為分析對象,利用模擬分析與實驗觀測同步研究群魚隊形排列對於游動性能與節能機制之影響,並探討跟隨魚隻之流場結構與游動策略。前人之文獻著重於魚隻擺尾頻率與生理參數變化分析,鮮少深入討論節能機制與魚隻間流場結構,且未見群魚生物流場之量測。因此本研究以活體實驗為基底,並建構出合理的物理模型,藉由實驗及模擬解析群魚游動隊形策略以及節能機制。
為了分析單因子變數之效應,本文以二維與三維群魚游動生成渦漩之交互作用,藉由調整上下游魚隻側向與游動方向之間距以瞭解群體魚隻最佳省能、推進及游動效率之空間分佈。流場可視化實驗顯示下游魚隻頭部擺動方向會受到上游魚隻產生之逆卡門渦漩所吸引,同時魚類會隨環境渦漩和彼此邊界條件交互影響而改變其跟隨距離。下游魚隻藉由調整跟隨位置避開射流使其有效回收渦漩能量以達成節能的效果。
本文對於魚類群游結構進行最佳化模擬,二維游動功率分析結果揭示群游之節能機制為:(1)下游魚隻受到槽道效應之影響輔助身軀擺動,分別於不同之時間步態達成頭部身軀和尾部擺動之節能效應;(2)調整排距接收上游魚隻生成渦漩的強度輔助尾部擺動。本文發現當上下游魚隻呈現游動向0.5倍身長、側向0.15倍身長時,平均單隻魚隻可減少達20%功率損耗。接著本文進行三維群游之數值模擬,並導入自身推進的技術模擬魚隻跟隨的互動行為。定點擺動之模擬結果顯示出相似於二維的推力表現,三維模型因前後壓差弱化,使得群游魚隻推力係數差異減小,而兩隻魚隻的跟隨互動下,無論有無擺尾調變策略,其魚隻平均游速皆大於單一魚隻之游速,證實跟隨游動有助於節能。本研究對於未來群體水下載具之發展深具意義,特別是在群體控制與空間安排上可提供一良好的機動策略。


In this study, the swimming patterns and energy-saving mechanism in fish school is numerically and experimentally investigated. The fish school phenomenon is first observed and qualitatively studied in experiment. To further investigate the energy-saving mechanism of fish school with mono-factor variable, we quantitatively characterized the wake flow structures, forces, and power consumption using numerical simulation with respect to various swimming patterns.
The results show that the spatial arrangement of school and the shed vortices are highly correlated and significantly affect the performances of the thrusts and power consumption of the fish group. The low pressure suction force produced by the reverse Karman vortices shed by the upstream fish decreases form drag of the downstream fish and facilitates the undulating movement periodically. The head and tail of the downstream fish reveal negative work output at specific time step because of the low pressure region between the downstream fish assisting the body undulation This mechanism reduces the power consumption of each fish in school by 20% averagely compared with that in solo.
In three dimensional simulation self-propelled cases, the results show that the average swimming velocity of the fish following case is greater than that of fish swimming in solo with the same body undulating motion. The energy-saving mechanism reveals in this work offer a physical insight into bio-inspired arrays for the underwater vehicles.


摘要 i
Abstract ii
誌謝 iii
目錄 v
圖表目錄 ix
符號說明 xiv
第一章 前言 1
1-1 研究背景 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 文獻回顧架構 3
2-2 魚類型態構造 3
2-3 魚類游動基本原理 4
2-3.1 BCF (body and/or caudal fin)推進模式 5
2-3.2 MPF (median and/or paired fin, MPF)推進模式 8
2-3.3 無因次參數介紹 8
2-4 魚類游動之節能機制 9
2-4.1 卡門渦街(Karman gait) 10
2-4.2 魚鰭之交互作用 11
2-4.3 群游機制 11
2-4.4 間歇游動(intermittent locomotion) 12
2-5 魚類群游 13
2-5.1 生物實驗量測 14
2-5.2 數值模擬 15
2-6 魚類側線系統(lateral line)簡介 16
2-7 生物互動以及工程應用 17
2-8 水下載具(Underwater Vehicle) 18
2-9 渦漩檢測法 19
2-10 前人未完成之處 20
第三章 研究方法 21
3-1 研究架構 21
3-2 實驗參數與因次分析 21
3-3 物理模型 23
3-3.1 二維物理模型 23
3-3.2 三維物理模型 25
3-4 動作分析 26
3-5 統御方程式 27
3-6 邊界條件與初始條件設定 28
3-7 游動性能係數定義 29
3-8 數值計算 30
3-8.1 CFD軟體簡介 30
3-8.2 數值計算方法 32
3-8.3 網格與時間步數獨立測試 37
3-9 自身推進策略 38
3-9.1 跟隨魚隻頻率調變策略 40
3-10 實驗設備與儀器架設 41
3-11 實驗分析方法 46
3-11.1 動作分析 46
3-11.2 粒子影像測速儀(PIV)原理 47
3-11.3 利用粒子影像測速儀量測魚隻互動流場 48
3-12 實驗物種 49
第四章 流場可視化實驗及二維數值模擬探討 50
4-1 動作分析 50
4-2 魚隻跟隨之節能機制分析 52
4-3 群魚游動之流場結構 56
4-4 推進力係數之探討 59
4-5 游動功率探討 64
4-5.1 頭部節能機制 65
4-5.2 尾部節能機制 67
4-5.3 排距對於游動功率之影響 68
4-5.4 節能機制類比 69
4-6 游動效率 71
第五章 三維群魚數值模擬探討 73
5-1 流場結構可視化 73
5-2 推進力係數探討 74
5-3 自身推進 77
5-4 跟隨魚隻流場模擬 81
5-4.1 定擺尾之流場模擬 81
5-4.2 導入調變策略之流場模擬 91
第六章 結論與未來展望 97
6-1 結論 97
6-2 未來展望 99
6-3 甘梯圖 101
參考文獻 102


Abrahams, M. V., and Colgan, P. W., "Risk of Predation, Hydrodynamic Efficiency and Their Influence on School Structure," Environmental Biology of Fishes, 1985, 13, pp. 195-202.
Anderson, J. M., Streitlien, K., Barrett, D. S., and Triantafyllou, M. S., "Oscillating Foils of High Propulsive Efficiency," Journal of Fluid Mechanics, 1998, 360, pp. 41-72.
Becco, C., Vandewalle, N., Delcourt, J., and Poncin, P., "Experimental Evidences of a Structural and Dynamical Transition in Fish School," Physica A- Statistical Mechanics and Its Applications, 2006, 367, pp. 487-493.
Blake, R. W., "Hovering Performance of a Negatively Buoyant Fish," Canadian Journal of Zoology-Revue Canadienne De Zoologie, 1983, 61, pp. 2629-2630.
Bleckmann, H., and Zelick, R., Lateral Line System of Fish, Integr. Zool., 2009, pp.13-15.
Borazjani, I., and Sotiropoulos, F., "Numerical Investigation of the Hydrodynamics of Carangiform Swimming in the Transitional and Inertial Flow Regimes," Journal of Experimental Biology, 2008, 211, pp. 1541-1558.
Breder, C. M., "Studies on the Structure of the Fish School," Bulletin of the American Museum of Natural History, 1951, 98, pp. 1-27.
Carling, J., Williams, T. L., and Bowtell, G., "Self-Propelled Anguilliform Swimming: Simultaneous Solution of the Two-Dimensional Navier-Stokes Equations and Newton''s Laws of Motion," Journal of Experimental Biology, 1998, 201, pp. 3143-3166.
Coombs, S., Hastings, M., and Finneran, J., "Modeling and Measuring Lateral Line Excitation Patterns to Changing Dipole Source Locations," Journal of Comparative Physiology A- Sensory Neural and Behavioral Physiology, 1996, 178, pp. 359-371.
Cullen, J. M., Shaw, E., and Baldwin, H. A., "Methods for Measuring 3-Dimensional Structure of Fish Schools," Animal Behaviour, 1965, 13, pp. 534-543.
Dabiri, J. O., and Gharib, M., "Fluid Entrainment by Isolated Vortex Rings," Journal of Fluid Mechanics, 2004, 511, pp. 311-331.
de Perera, T. B., "Fish Can Encode Order in Their Spatial Map," Proceedings of the Royal Society B- Biological Sciences, 2004, 271, pp. 2131-2134.
Deng, J., and Shao, X. M., "Hydrodynamics in a Diamond-Shaped Fish School," Journal of Hydrodynamics, 2006, 18, pp. 438-442.
Deng, J., Shao, X. M., and Yu, Z. S., "Hydrodynamic Studies on Two Traveling Wavy Foils in Tandem Arrangement," Physics of Fluids, 2007, 19, pp. 113104.
Dong, G. J., and Lu, X. Y., "Characteristics of Flow over Traveling Wavy Foils in a Side-by-Side Arrangement," Physics of Fluids, 2007, 19, pp. 057107.
Drucker, E. G., and Lauder, G. V., "Locomotor Function of the Dorsal Fin in Rainbow Trout: Kinematic Patterns and Hydrodynamic Forces," Journal of Experimental Biology, 2005, 208, pp. 4479-4494.
Eloy, C., "Optimal Strouhal Number for Swimming Animals," Journal of Fluids and Structures, 2012, 30, pp. 205-218.
Font, D., Tresanchez, M., Siegentahler, C., Palleja, T., Teixido, M., Pradalier, C., and Palacin, J., "Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle," Sensors, 2011, 11, pp. 11168-11187.
Galls, S. F., and Rediniotis, O. K., "Computational Simulation of the Autonomous Navigation of a Biomimetic Underwater Vehicle," AIAA Journal, 2003, 41, pp. 605-611.
Gleiss, A. C., Jorgensen, S. J., Liebsch, N., Sala, J. E., Norman, B., Hays, G. C., Quintana, F., Grundy, E., Campagna, C., Trites, A. W., Block, B. A., and Wilson, R. P., "Convergent Evolution in Locomotory Patterns of Flying and Swimming Animals," Nature Communications, 2011, 2, pp. 1350.
Guo, J., "Maneuvering and Control of a Biomimetic Autonomous Underwater Vehicle," Autonomous Robots, 2009, 26, pp. 241-249.
Haller, G., "An Objective Definition of a Vortex," Journal of Fluid Mechanics, 2005, 525, pp. 1-26.
Hara, T. J., and Zielinski B. S., Sensory Systems Neuroscience: Fish Physiology, Academic Press, New York, USA, 2007.
Herskin, J., and Steffensen, J. F., "Energy Savings in Sea Bass Swimming in a School: Measurements of Tail Beat Frequency and Oxygen Consumption at Different Swimming Speeds," Journal of Fish Biology, 1998, 53, pp. 366-376.
Hieber, S. E., and Koumoutsakos, P., "An Immersed Boundary Method for Smoothed Particle Hydrodynamics of Self-Propelled Swimmers," Journal of Computational Physics, 2008, 227, pp. 8636-8654.
Huth, A., and Wissel, C., "The Simulation of Fish Schools in Comparison with Experimental-Data," Ecological Modelling, 1994, 75, pp. 135-146.
Killen, S. S., Marras, S., Steffensen, J. F., and McKenzie, D. J., "Aerobic Capacity Influences the Spatial Position of Individuals within Fish Schools," Proceedings of the Royal Society B- Biological Sciences, 2012, 279, pp. 357-364.
Kolar, V., "Vortex Identification: New Requirements and Limitations," International Journal of Heat and Fluid Flow, 2007, 28, pp. 638-652.
Larsson, M., "Possible Functions of the Octavolateralis System in Fish Schooling," Fish and Fisheries, 2009, 10, pp. 344-353.
Larsson, M., "Incidental Sounds of Locomotion in Animal Cognition," Animal Cognition, 2012a, 15, pp. 1-13.
Larsson, M., "Why Do Fish School?," Current Zoology, 2012b, 58, pp. 116-128.
Lauder, G. V., Madden, P. G. A., Mittal, R., Dong, H. B., and Bozkurttas, M., "Locomotion with Flexible Propulsors: I. Experimental Analysis of Pectoral Fin Swimming in Sunfish," Bioinspiration & Biomimetics, 2006, 1, pp. S25-S34.
Lauder, G. V., and Tytell, E., "Three Gray Classics on the Biomechanics of Animal Movement," Journal of Experimental Biology, 2004, 207, pp. 1597-1599.
Liao, J. C., "Neuromuscular Control of Trout Swimming in a Vortex Street: Implications for Energy Economy During the Karman Gait," Journal of Experimental Biology, 2004, 207, pp. 3495-3506.
Liao, J. C., "A Review of Fish Swimming Mechanics and Behaviour in Altered Flows," Philosophical Transactions of the Royal Society B- Biological Sciences, 2007, 362, pp. 1973-1993.
Liao, J. C., Beal, D. N., Lauder, G. V., and Triantafyllou, M., "Novel Body Kinematics of Trout Swimming in a Von Karman Trail; Can Fish Tune to Vortices?," American Zoologist, 2001, 41, pp. 1505-1506.
Liao, J. C., Beal, D. N., Lauder, G. V., and Triantafyllou, M. S., "The Karman Gait: Novel Body Kinematics of Rainbow Trout Swimming in a Vortex Street," Journal of Experimental Biology, 2003, 206, pp. 1059-1073.
Linden, P. F., and Turner, J. S., "''Optimal'' Vortex Rings and Aquatic Propulsion Mechanisms," Proceedings of the Royal Society B- Biological Sciences, 2004, 271, pp. 647-653.
Liu, H., Wassersug, R. J., and Kawachi, K., "A Computational Fluid Dynamics Study of Tadpole Swimming," Journal of Experimental Biology, 1996, 199, pp. 1245-1260.
Marras, S., and Porfiri, M., "Fish and Robots Swimming Together: Attraction Towards the Robot Demands Biomimetic Locomotion," Journal of the Royal Society Interface, 2012, 9, pp. 1856-1868.
Milinski, M., and Heller, R., "Influence of a Predator on Optimal Foraging Behavior of Sticklebacks (Gasterosteus-Aculeatus L)," Nature, 1978, 275, pp. 642-644.
Mohseni, K., "A Formulation for Calculating the Translational Velocity of a Vortex Ring or Pair," Bioinspiration & Biomimetics, 2006, 1, pp. S57-S64.
Moyle, P. A. C., JJ, Fishes, an Introduction to Ichthyology, Benjamin Cummings, City, 2003.
Muller, U. K., "Fish ''N Flag," Science, 2003, 302, pp. 1511-1512.
Muller, U. K., VandenHeuvel, B. L. E., Stamhuis, E. J., and Videler, J. J., "Fish Foot Prints: Morphology and Energetics of the Wake Behind a Continuously Swimming Mullet (Chelon Labrosus Risso)," Journal of Experimental Biology, 1997, 200, pp. 2893-2906.
Najem, J., Sarles, S. A., Akle, B., and Leo, D. J., "Biomimetic Jellyfish-Inspired Underwater Vehicle Actuated by Ionic Polymer Metal Composite Actuators," Smart Materials and Structures, 2012, 21, pp. 094026.
Partridge, B. L., Johansson, J., and Kalish, J., "The Structure of Schools of Giant Bluefin Tuna in Cape Cod Bay," Environmental Biology of Fishes, 1983, 9, pp. 253-262.
Perrot, Y., Guillard, J., and Josse, E., "Convergence and Divergence between Two Multibeam Sonars (Simrad Sm20 and Reson Seabat 6012) Used to Extract the Spatial, Morphologic and Energy Parameters of Fish Schools," Fisheries Research, 2010, 106, pp. 378-385.
Satou, M., Shiraishi, A., Matsushima, T., and Okumoto, N., "Vibrational Communication During Spawning Behavior in the Hime Salmon (Landlocked Red Salmon, Oncorhynchus-Nerka)," Journal of Comparative Physiology A- Sensory Neural and Behavioral Physiology, 1991, 168, pp. 417-428.
Sfakiotakis, M., Lane, D. M., and Davies, J. B. C., "Review of Fish Swimming Modes for Aquatic Locomotion," IEEE Journal of Oceanic Engineering, 1999, 24, pp. 237-252.
Shang, L. J., Wang, S., Tan, M., and Cheng, L., "Swimming Locomotion Modeling for Biomimetic Underwater Vehicle with Two Undulating Long-Fins," Robotica, 2012, 30, pp. 913-923.
Shaw, E., "Schooling of Fishes - What Influences Make a Fish Join Others of Same Species to Form a School - Question Is Studied Partly by Observing Developing Behavior of Young Schooling Fishes in a Special Laboratory Aquarium," Scientific American, 1962, 206, pp. 128-175.
Taylor, G. K., Nudds, R. L., and Thomas, A. L. R., "Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency," Nature, 2003, 425, pp. 707-711.
Ting, S. C., and Yang, J. T., "Pitching Stabilization Via Caudal Fin-Wave Propagation in a Forward-Sinking Parrot Cichlid (Cichlasoma Citrinellum X Cichlasoma Synspilum)," Journal of Experimental Biology, 2008, 211, pp. 3147-3159.
Triantafyllou, G. S., Triantafyllou, M. S., and Grosenbaugh, M. A., "Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion," Journal of Fluids and Structures, 1993, 7, pp. 205-224.
Triantafyllou, M. S., Triantafyllou, G. S., and Yue, D. K. P., "Hydrodynamics of Fishlike Swimming," Annual Review of Fluid Mechanics, 2000, 32, pp. 33.
Tytell, E. D., and Lauder, G. V., "Escaping Fishes: Experimental Hydrodynamics of Wake Flow Patterns," Integrative and Comparative Biology, 2006, 46, pp. E143-E43.
Vogel, S., Comparative Biomechanics: Life''s Physical World, Princeton, USA, 2003.
Webb, P. W., Hydrodynamics and Energetics of Fish Propulsion, Department of the Environment Fisheries and Marine Service, Canada, 1975.
Webb, P. W., "Form and Function in Fish Swimming," Scientific American, 1984, 251, pp. 72-82.
Weihs, D., "Hydromechanics of Fish Schooling," Nature, 1973, 241, pp. 290-291.
Wen, L., Wang, T. M., Wu, G. H., and Liang, J. H., "Hydrodynamic Investigation of a Self-Propelled Robotic Fish Based on a Force-Feedback Control Method," Bioinspiration & Biomimetics, 2012, 7, pp. 036012.
Whittlesey, R. W., Liska, S., and Dabiri, J. O., "Fish Schooling as a Basis for Vertical Axis Wind Turbine Farm Design," Bioinspiration & Biomimetics, 2010, 5, pp. 035005.
Wu, C. J., and Wang, L., "Numerical Simulations of Self-Propelled Swimming of 3d Bionic Fish School," Science in China Series E- Technological Sciences, 2009, 52, pp. 658-669.
Yang, Y., Wu, G. H., Yu, Y. L., and Tong, B. G., "Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics," Chinese Physics Letters, 2008, 25, pp. 597-600.
Yu, C. L., Ting, S. C., Yeh, M. K., and Yang, J. T., "Three-Dimensional Numerical Simulation of Hydrodynamic Interactions between Pectoral-Fin Vortices and Body Undulation in a Swimming Fish," Physics of Fluids, 2011, 23, pp. 091019.
Yu, C. L., Hsu, Y. H., and Yang, J. T., "The Dependence of Propulsive Performance on the Slip Number in an Undulatory Swimming Fish," Ocean Engineering, 2013, doi: 10.1016/j.oceaneng.2013.05.030.
Zhou, C. L., and Low, K. H., "Design and Locomotion Control of a Biomimetic Underwater Vehicle with Fin Propulsion," IEEE-ASME Transactions on Mechatronics, 2012, 17, pp. 25-35.
Zhu, Q., Wolfgang, M. J., Yue, D. K. P., and Triantafyllou, M. S., "Three-Dimensional Flow Structures and Vorticity Control in Fish-Like Swimming," Journal of Fluid Mechanics, 2002, 468, pp. 1-28.
丁上杰, 2009,魚類操控式游動之流體動力與生物物理學研究, 國立清華大學動力機械工程學系博士論文


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔