(3.238.99.243) 您好!臺灣時間:2021/05/15 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳大宇
研究生(外文):Da-Yu Wu
論文名稱:電動機車內藏式永磁馬達多目標最佳化設計
論文名稱(外文):Multiobjective Optimal Design of an Interior Permanent Magnet Synchronous Motor for Electric Scooter
指導教授:陽毅平陽毅平引用關係
指導教授(外文):Yee-Pien Yang
口試委員:劉添華楊勝明
口試委員(外文):Tian-Hua LiuSheng-Ming Yang
口試日期:2013-05-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:128
中文關鍵詞:電動機車內藏式永磁馬達多目標最佳化設計有限元素分析弱磁控制
外文關鍵詞:Electric scooterinterior permanent magnet motormultiobjective optimal designfinite element analysisflux-weakening control
相關次數:
  • 被引用被引用:2
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本文的研究目的為設計電動機車的輪外馬達,依據電動機車的需求訂定馬達規格而進行設計。內藏式永磁馬達的結構強健,適合高速運轉,且d-q軸的電感差異大使得磁阻轉矩提升,弱磁控制效果佳,使馬達的可操作轉速範圍延伸,也較不容易發生退磁的現象。本文依據電動機車的馬達規格需求,依序挑選馬達的類型、繞線方式、槽數與極數,以及繞線規劃,並利用磁路模型求解氣隙磁通密度,進一步求得馬達的轉矩、反電動勢、效率等性能,再以多目標函數的最佳化,得到一組最佳的馬達參數尺寸,並且利用有限元素分析軟體進行驗證,以及細部參數的最佳化設計,並估測馬達性能曲線與效率分布。最後進行製造與測試,並根據實驗數據結果加以討論。


In this thesis, an interior permanent magnet (IPM) motor is designed based on specifications for electric scooters. IPM motors are robust and capable of operating at high motor efficiency over a wide range of speeds. In addition, the q-axis inductance is greater than the d-axis inductance because of the rotor geometry. As a result, reluctance torque can be generated, making the magnet highly resistant to demagnetization. In addition, the flux-weakening control, implemented by leading the input current phase, also increases the motor speed.First, the preliminary design determines the motor type, winding type, and the number of slots and poles. Second, a two-dimensional (2-D) magnetic circuit model for IPM motors is constructed by using the motor design equations, and the electromagnetic equations were established for an optimal motor design with a multifunctional optimizer. Finally, the optimal design result is verified by experiments on a prototype machine.


中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 x
符號表 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究目標 1
1.3 文獻回顧 3
1.4 論文章節架構 7
第二章 初步設計 8
2.1 設計流程 8
2.2 設計規格 8
2.3 馬達類型 9
2.4 繞線方式 11
2.5 槽數與極數 13
2.6 繞線規劃 15
第三章 永磁無刷馬達基礎理論 17
3.1 基本磁路模型 17
3.2 內藏式永磁馬達磁路模型 22
3.3 d-q軸數學模型 35
第四章 最佳化設計 53
4.1 靈敏度分析 53
4.2 多目標函數最佳化 70
第五章 有限元素分析 73
5.1 有限元素分析工具 73
5.2 有限元素法參數設計 79
5.3 性能分析 93
5.4 弱磁性能分析 97
第六章 製造與測試 103
6.1 製造與組裝 103
6.2 測試 105
6.3 實驗結果討論 111
第七章 結論 113
7.1 本文結論 113
7.2 未來展望 113
參考文獻 115
附錄A 漆包線規格 121
附錄B 矽鋼片鐵損特性 122
附錄C 磁鐵規格 123
附錄D 工程圖 124
附錄E 馬達參數 128


[1]中華民國交通部統計查詢網. [online]. Website: http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100
[2]N. Hashemnia and B. Asaei, “Comparative Study of using Different Electric Motors in The Electric Vehicles,” in 18th International Conference on Electrical Machines (ICEM), Vilamoura, September 6-9 2008 pp. 1 - 5.
[3]Z. Q. Zhu and D. Howe, “Electrical Machines and Drives for Electric, Hybrid and Fuel Cell Vehicles,” Proceedings of the IEEE, vol. 95, pp. 746 - 765, Apr. 2007.
[4]K. Sedef, A. Maheri, A. Daadbin, and M. Yilmaz, “A Comparative Study of the Performance of DC Permanent Magnet and AC Induction Motors in Urban Electric Cars,” 2nd International Symposium on Environment Friendly Energies and Applications (EFEA), Newcastle upon Tyne, June 25-27, 2012. pp. 100 - 105.
[5]N. P. Shah, A. D. Hirzel, and B. Cho, “Transmissionless Selectively Aligned Surface-Permanent-Magnet BLDC Motor in Hybrid Electric Vehicles,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 669 - 677, Feb. 2010.
[6]B. M. Song and J. Y. Choi, “A Low-Speed High-Torque Permanent Magnet Motor for Electric Scooters,” in IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, Illinois, USA, September 6-9 2011, pp. 1 - 6.
[7]W. Gruber, W. Back, and W. Amrhein, “Design and Implementation of a Wheel Hub Motor for an Electric Scooter,” in IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, Illinois, USA, September 6-9 2011, pp.1 - 6.
[8]E. Armando , P. Guglielmi , M. Martino, and M. Pastorelli, “Big Electric Scooter: an Experience from Lab to the Road,” in 3rd IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, June 3-5 2008, pp. 1680 - 1684.
[9]G. Pellegrino, E. Armando, and P. Guglielmi, “Direct Flux Field-Oriented Control of IPM Drives with Variable DC Link in the Field-weakening Region,” IEEE Transactions on Industry Applications, vol. 45, pp. 1619 - 1627, Sep./Oct. 2009.
[10]G. Alli, S. Formentin, and S.M. Savaresi,“ A Range-Bounding Strategy for Electric Scooters,” in IEEE International Electric Vehicle Conference (IEVC), Greenville, SC, March 4-8 2012. pp. 1 - 7.
[11]N. Bianchi, S. Bolognani, and M. Zigliotto, “High-Performance PM Synchronous Motor Drive for an Electrical Scooter,” IEEE Transactions on Industry Applications, vol. 37, pp. 1348 - 1355, Sep./Oct. 2001.
[12]D. Evans, Z. Azar, L. J. Wu, and Z. Q. Zhu, “Comparison of Optimal Design and Performance of PM Machines Having Non-Overlapping Windings and Different Rotor Topologies,” in 5th IET International Conference on Power Electronics, Machines and Drives(PEMD), Brighton, UK, April 19-21 2010, pp. 1 - 7.
[13]T. M. Jahns, G. B. Kliman, and T. W. Neumann, “Interior Permanent Magnet Synchronous Motors for Adjustable-speed Drives,” IEEE Transactions on Industry Applications, vol. 22, pp. 738 - 747, Jul. 1986.
[14]T. M. Jahns, “Flux-Weakening Regime Operation of an Interior Magnet Synchronous Motor Drive,” IEEE Transactions on Industry Applications, vol. 23, pp. 681 - 689, Jul. 1987.
[15]S. Morimoto, Y. Takeda, T. Hirasa, and K. Taniguchi, “Expansion of Operating Limits for Permanent Motor by Current Vector Control Considering Inverter Capacity,” IEEE Transactions on Industry Applications, vol. 26, pp. 866 - 871, Sep./Oct. 1990.
[16]W. L. Soong and T. J. E. Miller, “Field-Weakening Performance of Brushless Synchronous AC Motor Drives,” IEE Proceedings Electric Power Applications, vol. 141, pp. 331 - 340, Nov. 1994.
[17]S. Bolognani, R. Petrella, A. Prearo, and L. Sgarbossa, “Automatic Tracking of MTPA Trajectory in IPM Motor Drives Based on AC Current Injection,” IEEE Transactions on Industry Applications, vol. 47, pp. 105 - 114, Jan./Feb. 2011.
[18]G. Wang, Z.Li, G. Zhang, and Y. Yu, “Quadrature PLL-Based High-Order Sliding-Mode Observer for IPMSM Sensorless Control With Online MTPA Control Strategy,” IEEE Transactions on Energy Conversion, Vol. 28, pp 214 - 224, Mar. 2013.
[19]S. Y. Jung, J. Hong, and K. Nam, “Current Minimizing Torque Control of the IPMSM Using Ferrari’s Method,” IEEE Transactions on Power Electronics, Vol. 28, pp 5603 - 5617, Dec. 2013.
[20]G. Pellegrino, A. Vagati, and P. Guglielmi, “Design Tradeoffs Between Constant Power Speed Range, Uncontrolled Generator Operation, and Rated Current of IPM Motor Drives,” IEEE Transactions on Industry Applications, vol. 47, pp. 1995 - 2003, Sep./Oct. 2011.
[21]D. H. Kim, I. H. Park, J. H. Lee, and C. E. Kim, “Optimal Shape Design of Iron Core to Reduce Cogging Torque of IPM Motor,” IEEE Transactions on Magnetics, vol. 39, pp. 1456 - 1459, May 2003.
[22]G. H. Kang, Y. D. Son, G. T. Kim, and J. Hur, “A Novel Cogging Torque Reduction Method for Interior-type Permanent-magnet Motor,” IEEE Transactions on Magnetics, vol. 45, pp. 161 - 167, Jan./Feb. 2009.
[23]J. Kwack, S. Min, and J. Hong, “Optimal Stator Design of Interior Permanent Magnet Motor to Reduce Torque Ripple Using the Level Set Method,” IEEE Transactions on Magnetics, vol. 46, pp. 2018 - 2111, Jun. 2010.
[24]K. Kamiev, J. Montonen, M. Ragavendra, J. Pyrhonen, J. Tapia, and M. Niemela, “Design Principles of Permanent Magnet Synchronous Machines for Parallel Hybrid or Traction Applications,” IEEE Transactions on Industrial Electronics, vol. 60, pp. 4881 - 4890, Nov. 2013.
[25]F. Parasiliti, M. Villani, S. Lucidi, and F. Rinaldi, “Finite-Element-based Multiobjective Design Optimization Procedure of Interior Permanent Magnet Synchronous Motors for Wide Constant-Power Region Operation,” IEEE Transactions on Industrial Electronics, vol. 59, pp. 2503 - 2514, Dec. 2012.
[26]M. Cao, “Online Loss Minimization Control of Ipmsm for Electric Scooters,” in International Power Electronics Conference (IPEC), Sapporo, June 21-24, 2010, pp. 1388 - 1392.
[27]B. Asaei and B. Rahrovi, “Minimum-Copper-Loss Control Over Full Speed Range of an IPMSM Drive for Hybrid Electric Vehicle Application,” in IEEE Vehicle Power and Propulsion Conference (VPPC), September 1-3, 2010, pp. 1 - 6.
[28]S. J. Kim, W. S. Im, J. W. Park, H. W. Jung, and J. M. Kim, “Minimum Copper Loss Drive Method of Three-Phase Dual-Rotor BLDC Machines,” in 7th International Power Electronics and Motion Control Conference (IPEMC), Harbin, June 2-5, 2012, pp. 978 - 981.
[29]D. Fodorean, L. Idoumghar, and L. Szabo, “Motorization for an Electric Scooter by Using Permanent Magnet Machines Optimized Based on Hybrid Metaheuristic Algorithm,” IEEE Transactions on Vehicular Technology, vol. 62,pp. 39 - 49, Jan. 2013.
[30]D. Fodorean and L. Szabo, “Control of a Permanent Magnet Synchronous Motor for Electric Scooter Application,” in International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), June 20-22, 2012, pp. 1178 - 1181.
[31]C. C. Hwang and Y. H. Cho, “Effects of Leakage Flux on Magnetic Fields of Interior Permanent Magnet Synchronous Motors,” IEEE Transactions on Magnetics, vol. 37, pp. 3021 - 3024, Jul. 2001.
[32]E. C. Lovelance, T. M. Jahns, and J. H. Lang, “A Saturating Lumped Parameter Model for an Interior PM Synchronous Machine,” Transactions on Industry Applications, vol. 38, pp. 645 - 650, May./Jun. 2002.
[33]S. Han, T. M. Jahns, and W. L. Soong, “A Magnetic Circuit Model for an IPM Synchronous Machine Incorporating Moving Airgap and Crosscoupled Saturation Effects,” in IEEE International Electrical Machines and Drives Conference (IEMDC), Antalya, Turkey, May 3-5, 2007, pp. 21 - 26.
[34]L. Zhu, S. Z. Jiang, Z. Q. Zhu, and C. C. Chan, “Analytical Modeling of Open-Circuit Air-Gap Field Distributions in Multisegment and Multilayer Interior Permanent-Magnet Machines,” IEEE Transactions on Magnetics, vol. 45, pp. 3121 - 3130, Aug. 2009.
[35]P. Guglielmi, B. Boazzo, E. Armando, G. Pellegrino, A. Vagati, “Permanent-Magnet Minimization in PM-Assisted Synchronous Reluctance Motors for Wide Speed Range,” IEEE Transactions on Industry Applications, vol. 49, pp. 31 - 41, Jan./Feb. 2013.
[36]S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal Design of Permanent Magnet Motors to Improve Field-Weakening Performances in Variable Speed Drives,” IEEE Transactions on Industrial Electronics, vol. 59, pp. 2484 - 2494, Jun. 2012.
[37]L. Zhu, S. Z. Jiang, Z. Q. Zhu, and C. C. Chan, “A New Simplex Wave Winding Permanent-Magnet Brushless DC Machine,” IEEE Transactions on Magnetics, vol. 47, pp. 252 - 259, Jan. 2011.
[38]L. Zhu, S.Z. Jiang, J. Z. Jiang, Z. Q. Zhu, and C. C. Chan, “Speed Range Extension for Simplex Wave Winding Permanent-Magnet Brushless DC Machine,” IEEE Transactions on Magnetics, vol. 49, pp. 890 - 897, Feb. 2013.
[39]M. Cros and P. Viarouge, “Synthesis of High Performance PM Motors with Concentrated Windings,” IEEE Transactions on Energy Conversion, vol. 17, pp. 248 - 253, Jun. 2002.
[40]A. M. El-Refaie, “Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines: Opportunities and Challenges,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 107 - 121, Jan. 2010.
[41]D. Ishak, Z. Q. Zhu, and D. Howe, “Permanent-Magnet Brushless Machines with Unequal Tooth Widths and Similar Slot and Pole Numbers,” IEEE Transactions on Industry Applications, vol. 41, pp. 584 - 590, Mar./Apr. 2005.
[42]D. Ishak, Z. Q. Zhu and D. Howe, “Comparison of PM Brushless Motors, Having Either All Teeth or Alternate Teeth Wound,” IEEE Transactions on Energy Conversion, vol. 21, pp. 95 - 103, Mar. 2006.
[43]D. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw-Hill, 2nd ed., 2003.
[44]F. Magnussen and C. Sadarangani, “Winding Factors and Joule Losses of Permanent Magnet Machines with Concentrated Windings,” in IEEE International Electric Machine and Drives Conference (IEMDC), Madison, WI, June 1-4, 2003, pp. 333 - 339.
[45]Z. Q. Zhu, D. Ishak, D. Howe, and J. Chen, “Unbalanced Magnetic Forces in Permanent-Magnet Brushless Machines with Diametrically Asymmetric Phase Windings,” IEEE Transactions on Industry Applications, vol. 43, pp. 1544 - 1553, Nov./Dec. 2007.
[46]V. Ostovic, Computer-aided Analysis of Electric Machines, New York: Prentice Hall, 1994.
[47]Y. P. Yang, Y. P. Luh, C. H. Cheung, J. P. Wang, and S. W. Wu, “Multi-Objective Optimal Design and Current Waveforms Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles,” IEEE International Symposium on Industrial Electronics, vol. 1, pp. 621 - 626, Jun. 2003.
[48]A. E. Fitzgerald,C. Kingsley Jr.,S. D. Umans, Electric Machinery, New York:McGraw-Hill, 2003.
[49]劉昌煥, 交流電機控制, 4th ed. 台北市: 東華書局, 2008.
[50]P. C. Krause,O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd ed., IEEE Press, 2002.
[51]Kwang Hee Nam, AC Motor Control and Electric Vehicle Application, CRC Press, 2010.
[52]Zeleny, M, Multiple Criteria Decision Making, New York:McGraw-Hill, 1982.
[53]H. H. Jan, Design and Development of 50 kW Interior Permanent Magnet Synchronous Motor for Electric Vehicle, M.S. thesis, Department of Mechanical Engineering College of Engineering, National Taiwan University, Taipei, 2008.
[54]Z. Q. Zhu, and D. Howe, “Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines,” IEEE Transactions on Energy Conversion, vol. 15, pp. 407 - 412, Dec. 2000.
[55]G. Qi, J. T. Chen, Z. Q. Zhu, D. Howe, L. B. Zhou, and C. L. Gu, “Influence of Skew and Cross-Coupling on Flux-Weakening Performance of PM Brushless AC Machines,” IEEE Transactions on Magnetics, vol. 45, pp. 2110 - 2117, May 2009.
[56]丁奕元, 基於霍爾感測器之改良型轉子角度估算法應用於內藏式永磁同步馬達之驅動控制, 碩士論文, 國立台灣大學, 台北, 2011.
[57]丁富軒, 薄型軸向磁通電動自行車直驅馬達最佳設計分析, 碩士論文, 國立台灣大學, 台北, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊