(3.80.6.131) 您好!臺灣時間:2021/05/15 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姚嘉俊
研究生(外文):Chia-Chun Yao
論文名稱:生質柴油預混醇類於微重力下燃燒研究
論文名稱(外文):Burning characteristics of biodiesel mixed with alcohol in microgravity condition
指導教授:潘國隆
指導教授(外文):Kuo-Long Pan
口試委員:王興華吳明勳
口試委員(外文):Ching-Hua WangMing-Hsun Wu
口試日期:2013-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:118
中文關鍵詞:微重力自由落體生質柴油醇類微爆碳微粒
外文關鍵詞:microgravityfree-falling bodybiodieselalcoholmicro-explosion soot
相關次數:
  • 被引用被引用:2
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文使用落塔(drop tower)方式進行0.68 s的自由落體以達到微重力環境,固定液滴尺寸為535 μm,並利用電熱絲點火觀察單組份液滴及雙組份液滴於微重力環境下燃燒現象(包括:液滴直徑變化、平均燃燒速度、微爆(micro-explosion)及火焰熄滅等)。實驗所使用之單組份燃油分別為甲醇、乙醇、異丙醇、十六烷、十二烷、柴油及生質柴油,而雙組份之燃油為生質柴油預混乙醇之燃燒。為使量測液滴尺寸上有一致性且誤差減至最低,本實驗使用Matrox Inspector 8.0之影像軟體內建的自動量測邊界。

實驗結果發現,將生質柴油預混醇類之液滴打上懸掛線上時,會有類似液泡的不均勻(non-uniform)現象發生,此時不管在重力或是微重力下燃燒,皆會產生微爆。而不均勻之現象與環境之相對濕度有關,隨著相對濕度越高,產生出之液泡就越大。在相同的相對濕度下,液泡會隨著醇類的碳數增加而越小;且隨著醇類重量百分比濃度上升,產生出之液泡就越大;同時也發現,液滴內部的液泡會隨著時間越來越小,當液滴內部之液泡消失時,燃燒過程中微爆現象不會產生。
當相對濕度為50 %時,異丙醇25 %之組份就會產生微爆,將相對濕度降至38 %時,異丙醇之組份可升到45 %才會產生微爆,因此可以觀察到添加異丙醇可以使燃燒速率增加,異丙醇組份在25 %至35 %區間之燃燒速率趨於平緩,而異丙醇40 %之燃燒速率有下降的趨勢。而乙醇25 %之組份,從相對濕度50 %降至40 %時,依然會產生微爆。


The research uses the method called “drop tower” to undergo a 0.68s free-falling body and reach the microgravity environment. Confining the droplet diameter to 535 μm and using hot wire to ignite the droplet, we observe the phenomena of single component droplet and binary fuel droplet burning in microgravity environment (including the evolution of droplet diameter, burning rate, micro-explosion, and extinguish). The single component fuels used in the experiment are methanol, ethanol, propanol, hexadecane, dodecane, diesel, and biodiesel. The binary fuel used in the experiment is the premixed liquid of bio-diesel and ethanol. To ensure the consistency of the target droplets and to minimize the experiment error, this experiment use the built-in function of a image process software, Matrox Inspector 8.0, to measure boundaries.
In the experiment results, we found that when we deploy the droplet of biodiesel mixed with alcohol onto fiber, the non-uniform phenomenon similar to liquid bubble occurs. In this situation, whether under the condition of gravity or microgravity, micro-explosion is sure to occur while burning. And this non-uniform phenomenon is related to the relative humidity of the environment. Along with the rise of relative humidity, the liquid bubble gets bigger and bigger. Under the same relative humidity, liquid bubbles would become smaller when the carbon number of alcohol increases. Also, with the increase of alcohol concentration in percent by weight, the size of liquid bubbles become bigger. We also discovered that the liquid bubble substance inside the droplet would diminish with time. When the liquid bubble substance vanishes, so does the micro-explosion during burning.
When the relative humidity is 50 %, the 25 % by weight 2-Propanol solution will have micro-explosion. After lowering the relative humidity to 38 %, micro-explosion would not occur until the percentage of weight of 2-Propanol solution was raised to 45 %. Therefore, we can observe that adding 2-Propanol can lead to the increase of burning rate. The burning rate of between 25~30 % by weight 2-Propanol solution does not change significantly while it tends to decrease when the weight percentage comes to 40%. On the other hand, 25 % by weight ethanol solution would still experience micro-explosion after lowering the relative humidity from 50 % to 40 %.
In the experiment results, we found that when we deploy the droplet of biodiesel mixed with alcohol onto fiber, the non-uniform phenomenon similar to liquid bubble occurs. In this situation, whether under the condition of gravity or microgravity, micro-explosion is sure to occur while burning. And this non-uniform phenomenon is related to the relative humidity of the environment. Along with the rise of relative humidity, the liquid bubble gets bigger and bigger. Under the same relative humidity, liquid bubbles would become smaller when the carbon number of alcohol increases. Also, with the increase of alcohol concentration in percent by weight, the size of liquid bubbles become bigger. We also discovered that the liquid bubble substance inside the droplet would diminish with time. When the liquid bubble substance vanishes, so does the micro-explosion during burning.
When the relative humidity is 50 %, the 25 % by weight 2-Propanol solution will have micro-explosion. After lowering the relative humidity to 38 %, micro-explosion would not occur until the percentage of weight of 2-Propanol solution was raised to 45 %. Therefore, we can observe that adding 2-Propanol can lead to the increase of burning rate. The burning rate of between 25~30 % by weight 2-Propanol solution does not change significantly while it tends to decrease when the weight percentage comes to 40%. On the other hand, 25 % by weight ethanol solution would still experience micro-explosion after lowering the relative humidity from 50 % to 40 %.
In the experiment results, we found that when we deploy the droplet of biodiesel mixed with alcohol onto fiber, the non-uniform phenomenon similar to liquid bubble occurs. In this situation, whether under the condition of gravity or microgravity, micro-explosion is sure to occur while burning. And this non-uniform phenomenon is related to the relative humidity of the environment. Along with the rise of relative humidity, the liquid bubble gets bigger and bigger. Under the same relative humidity, liquid bubbles would become smaller when the carbon number of alcohol increases. Also, with the increase of alcohol concentration in percent by weight, the size of liquid bubbles become bigger. We also discovered that the liquid bubble substance inside the droplet would diminish with time. When the liquid bubble substance vanishes, so does the micro-explosion during burning.
When the relative humidity is 50 %, the 25 % by weight 2-Propanol solution will have micro-explosion. After lowering the relative humidity to 38 %, micro-explosion would not occur until the percentage of weight of 2-Propanol solution was raised to 45 %. Therefore, we can observe that adding 2-Propanol can lead to the increase of burning rate. The burning rate of between 25~30 % by weight 2-Propanol solution does not change significantly while it tends to decrease when the weight percentage comes to 40%. On the other hand, 25 % by weight ethanol solution would still experience micro-explosion after lowering the relative humidity from 50 % to 40 %.
In the experiment results, we found that when we deploy the droplet of biodiesel mixed with alcohol onto fiber, the non-uniform phenomenon similar to liquid bubble occurs. In this situation, whether under the condition of gravity or microgravity, micro-explosion is sure to occur while burning. And this non-uniform phenomenon is related to the relative humidity of the environment. Along with the rise of relative humidity, the liquid bubble gets bigger and bigger. Under the same relative humidity, liquid bubbles would become smaller when the carbon number of alcohol increases. Also, with the increase of alcohol concentration in percent by weight, the size of liquid bubbles become bigger. We also discovered that the liquid bubble substance inside the droplet would diminish with time. When the liquid bubble substance vanishes, so does the micro-explosion during burning.
When the relative humidity is 50 %, the 25 % by weight 2-Propanol solution will have micro-explosion. After lowering the relative humidity to 38 %, micro-explosion would not occur until the percentage of weight of 2-Propanol solution was raised to 45 %. Therefore, we can observe that adding 2-Propanol can lead to the increase of burning rate. The burning rate of between 25~30 % by weight 2-Propanol solution does not change significantly while it tends to decrease when the weight percentage comes to 40%. On the other hand, 25 % by weight ethanol solution would still experience micro-explosion after lowering the relative humidity from 50 % to 40 %.


口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
符號 v
目錄 vii
圖表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 9
第二章 基礎理論 10
2.1 d2-Law 12
2.2 點火延遲 13
2.3 燃油分子於汽相中停留時間 13
2.4 碳微粒的形成 14
2.5 多組份液滴之燃燒 16
2.6 多組分液滴成核 17
2.7 G-level之評估 18
2.8 阻力箱與drop package之高度差 18
2.9 油料特性 21
2.9.1 生質柴油 21
2.9.2 預混醇類 22
第三章 實驗設備與方法 23
3.1 實驗方法 23
3.1.1 懸掛液滴法 23
3.1.2 抽拉釋放法 24
3.1.3 自由液滴法 25
3.2 實驗及觀測設備 26
3.2.1 Drop tower 27
3.2.2 Drop package 31
3.2.3 電子控制系統 36
3.2.4 電腦控制系統 38
3.2.5 影像處理系統 39
3.3 實驗儀器之校正與分析 40
3.3.1 高速攝影機所拍攝之影像與實際尺寸之校正 40
3.3.2 液滴產生器之穩定性分析 41
3.3.3 於自由落體過程中之穩定性分析 42
3.3.4 電熱絲加熱對液滴之影響分析 43
3.3.5 控制系統設定 44
3.4 實驗步驟 45
3.4.1 實驗步驟 45
3.4.2 實驗動作流程 46
3.5 資料處理 48
3.5.1 影像處理方法 48
3.5.2 數據分析 50
3.6 誤差分析 51
3.6.1 量測誤差 51
3.6.2 液滴大小於重力與微重力下之誤差分析 52
3.6.3 照片時間間距誤差 53
3.6.4 熱傳誤差 54
第四章 結果與討論 55
4.1 實驗工作條件 55
4.2 純油料之燃燒現象觀察 56
4.2.1 十二烷 56
4.2.2 十六烷 59
4.2.3 生質柴油 62
4.2.4 柴油 65
4.2.5 Sooting燃料之綜合比較 68
4.2.6 異丙醇 69
4.2.7 乙醇 71
4.2.8 甲醇 73
4.2.9 醇類綜合比較 74
4.3 雙組份之燃燒現象觀察 76
4.3.1 生質柴油與乙醇預混於微重力燃燒之現象 76
4.3.2 生質柴油與乙醇混合之現象 79
4.4 探討前人因量測誤差對燃燒速率之影響 106
第五章 實驗結果與未來展望 111
5.1 結論 111
5.2 研究貢獻 112
5.3 未來展望與建議 112
參考文獻 113


[1]Kumagai, S., & Isoda, H. (1957, December). Combustion of fuel droplets in a falling chamber. In Symposium (International) on Combustion (Vol. 6, No. 1, pp. 726-731). Elsevier.
[2]Hall, A. L., “Observation on the burning of a candle at zero gravity,“ Naval School of Aviation Medicine Reports, 1964, AD-436897.
[3]Kimzey, J. H., Downs, W. R., Eldred, C. H., and Norris,C. W., “Flammability in zero-gravity environment,“ NASA TR R-246, 1966.
[4]Kumagai, S., Sakai, T., & Okajima, S. (1971, December). Combustion of free fuel droplets in a freely falling chamber. In Symposium (International) on Combustion (Vol. 13, No. 1, pp. 779-785). Elsevier.
[5]Avedisian, C. T., Yang, J. C., & Wang, C. H. (1988). On low-gravity droplet combustion. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 420(1858), 183-200.
[6]Jackson, G. S., & Avedisian, C. T. (1994). The effect of initial diameter in spherically symmetric droplet combustion of sooting fuels. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 446(1927), 255-276.
[7]Choi, M. Y., Dryer, F. L., & Haggard Jr, J. B. (1991). Observations on a slow burning regime for hydrocarbon droplets-n-heptane/air results. In Symposium (International) on Combustion, 23 rd, Orleans, France (pp. 1597-1604).
[8]Shaw, B. D., Dryer, F. L., Williams, F. A., & Haggard Jr, J. B. (1988). Sooting and disruption in spherically symmetrical combustion of decane droplets in air. Acta Astronautica, 17(11), 1195-1202..
[9]Jackson, G. S., Avedisian, C. T., & Yang, J. C. (1991). Soot formation during combustion of unsupported methanol/toluene mixture droplets in microgravity. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 435(1894), 359-369.
[10]Choi, M. Y., & Kyeong-Okk, L. (1996, December). Investigation of sooting in microgravity droplet combustion. In Symposium (International) on Combustion (Vol. 26, No. 1, pp. 1243-1249). Elsevier.
[11]LEE, K. O., MANZELLO, S. L., & CHOI, M. Y. (1998). The effects of initial diameter on sooting and burning behavior of isolated droplets under microgravity conditions. Combustion science and technology, 132(1-6), 139-156.
[12]Jackson, G. S., Avedisian, C. T., & Yang, J. C. (1992). Observations of soot during droplet combustion at low gravity: heptane and heptane/monochloroalkane mixtures. International journal of heat and mass transfer, 35(8), 2017-2033.
[13]Farouk, T. I., Liu, Y. C., Savas, A. J., Avedisian, C. T., & Dryer, F. L. (2012). Sub-millimeter sized methyl butanoate droplet combustion: Microgravity experiments and detailed numerical modeling. Proceedings of the Combustion Institute.
[14]Marchese, A. J., Vaughn, T. L., Kroenlein, K., & Dryer, F. L. (2011). Ignition delay of fatty acid methyl ester fuel droplets: Microgravity experiments and detailed numerical modeling. Proceedings of the Combustion Institute, 33(2), 2021-2030.
[15]Liu, Y. C., Farouk, T., Savas, A. J., Dryer, F. L., & Thomas Avedisian, C. (2012). On the spherically symmetrical combustion of methyl decanoate droplets and comparisons with detailed numerical modeling. Combustion and Flame.
[16]Hicks, M. C., Nayagam, V., & Williams, F. A. (2010). Methanol droplet extinction in carbon-dioxide-enriched environments in microgravity. Combustion and Flame, 157(8), 1439-1445.
[17]Dzik, J., Nayagam, V., & Williams, F. A. (2010). Ignition and combustion of n-heptane droplets in carbon dioxide enriched environments. International Communications in Heat and Mass Transfer, 37(3), 221-225.
[18]Yozgatligil, A., Park, S. H., Choi, M. Y., Kazakov, A., & Dryer, F. L. (2004). Burning and sooting behavior of ethanol droplet combustion under microgravity conditions. Combustion science and technology, 176(11), 1985-1999.
[19]Yozgatligil, A., Park, S. H., Choi, M. Y., Kazakov, A., & Dryer, F. L. (2007). Influence of oxygen concentration on the sooting behavior of ethanol droplet flames in microgravity conditions. Proceedings of the Combustion Institute, 31(2), 2165-2173.
[20]Frenklach, M., Clary, D. W., Gardiner, W. C., & Stein, S. E. (1985, December). Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. In Symposium (International) on Combustion (Vol. 20, No. 1, pp. 887-901). Elsevier.
[21]Bae, J. H., & Avedisian, C. T. (2004). Experimental study of the combustion dynamics of jet fuel droplets with additives in the absence of convection. Combustion and flame, 137(1), 148-162.
[22]Bae, J. H., & Avedisian, C. T. (2007). Experimental study of the effect of helium/nitrogen concentration and initial droplet diameter on nonane droplet combustion with minimal convection. Proceedings of the Combustion Institute, 31(2), 2157-2164.
[23]Park, S. H., & Choi, M. Y. (2009). Formation of Sootshell and Attendant Effects on Droplet Burning Rate and Radiative Heat Transfer in Microgravity Ethanol Droplet Flames. Energy & Fuels, 23(9), 4395-4403.
[24]Xu, G., Ikegami, M., Honma, S., Ikeda, K., Ma, X., Nagaishi, H., ... & Struk, P. M. (2003). Inverse influence of initial diameter on droplet burning rate in cold and hot ambiences: a thermal action of flame in balance with heat loss. International journal of heat and mass transfer, 46(7), 1155-1169.
[25]Jackson, G. S., & Avedisian, C. T. (1998). Combustion of unsupported water-in- n-heptane emulsion droplets in a convection-free environment. International journal of heat and mass transfer, 41(16), 2503-2515.
[26]Pan, K. L., Li, J. W., Chen, C. P., & Wang, C. H. (2009). On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition. Combustion and Flame, 156(10), 1926-1936.
[27]Marchese, A. J., Dryer, F. L., & Colantonio, R. O. (1998, December). Radiative effects in space-based methanol/water droplet combustion experiments. In Symposium (International) on Combustion (Vol. 27, No. 2, pp. 2627-2634). Elsevier.
[28]Shaw, B. D., & Wei, J. B. (2007). Propanol droplet flammability and combustion in air-diluent environments under normal and reduced gravity. Combustion science and technology, 179(6), 1205-1223.
[29]Law, C. K., Combustion Physics, 2006, pp. 208.
[30]Turns, S. R., "An Introduction to Combustion : concepts and applications," Boston : McGraw-Hill, 2000
[31]Shaddix, C., & Williams, T. (2007). Soot: Giver and Taker of Light The complex structure of soot greatly influences the optical effects seen in fires. American scientist, 95(3), 238.
[32]Lara-Urbaneja, P., & Sirignano, W. A. (1981, December). Theory of transient multicomponent droplet vaporization in a convective field. In Symposium (International) on Combustion (Vol. 18, No. 1, pp. 1365-1374). Elsevier.
[33]陳建培, "雙組份燃油液滴於無重力場下之燃燒情形," 國立台灣大學機械工程學研究所碩士論文, 2008.
[34]邱明峻, "生質柴油與柴油混合醇類於微重力場下燃燒研究," 國立台灣大學機械工程學研究所碩士論文, 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top