跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/25 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊承桓
研究生(外文):Cheng-Huan Yang
論文名稱:高效率高精度雙面大面積微結構複製技術之研發
論文名稱(外文):Development of Efficient Techniques for Large-area Replication of High-Precision Double-Sided Microstructures
指導教授:楊申語楊申語引用關係
指導教授(外文):Sen-Yeu Yang
口試委員:王珉玟沈永康吳政憲陳仁浩張復瑜
口試委員(外文):Min-Wen WangYong-Kang ChenCheng-Hsien WuRen-Hao ChenFuh-Yu Chang
口試日期:2013-07-05
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:240
中文關鍵詞:微結構複製雙面大面積熱壓印紫外光固化高精度
外文關鍵詞:microstructures replicationdouble-sided large-areahot embossingUV curinghigh-precision
相關次數:
  • 被引用被引用:1
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,微結構廣泛應用於許多關鍵的光學與生醫元件中,因此如何有效率的製作具有卓越展現之光學與生醫元件,則為當前重要課題之一。高性能展現之元件,則需高精度微結構複製技術。於製作雙面高精度品質之微奈米結構中,板對板微熱壓印為最有可能邁入量產之技術。皮帶輪紫外光樹脂轉印,則為最具前瞻性,最能進行大量生產之技術。因此本文將針對前述兩技術進行精進。
於板對板微熱壓印技術方面,傳統均溫微熱壓印技術如同開模鍛造般,使製程物處於自由邊界之狀態下進行製程,此現象會導致製成成品產生變異。本研究中運用三種技術進行比較,分別為傳統均溫微熱壓印技術、非均勻壓力補償技術及固定邊界微熱壓印技術。固定邊界微熱壓印技術之壓板,設計成能使製程物表面呈現兩側較低溫,中央較高溫之溫度分佈。此現象使傳統微熱壓印,由自由邊界狀態轉變為固定邊界下進行製程。實驗結果顯示,固定邊界微熱壓印技術具有製造具大面積雙面高精度微結構且具高輝度之導光板,並具有邁入量產之潛能。
於皮帶輪紫外光樹脂轉印技術方面,光源展現部分:一般紫外光樹脂微結構複製製程的曝光採直下式照射,耗能且不易執行雙面微結構複製。而壓力展現部分:傳統的皮帶輪滾壓技術,基材於滾輪下方受滾輪正向力,於皮帶下方只受皮帶張力,使得製程物於壓力不均勻之狀態下進行製程,此現象則導致製成成品產生相關變異。本研究中結合側入式光源與氣浮軸承於皮帶輪滾壓技術上。側入式光源之導入,不僅減少所用能量,降低成本,並解決了不易進行雙面微結構複製之限制。而氣浮軸承可使模具與基材之接觸面積大幅增加,由感壓軟片則證實氣浮軸承確實可有效提升壓力均勻性,並提高各區域微結構轉寫精度。實驗結果顯示,皮帶輪側入光源氣浮軸承轉印技術具有大量且快速連續生產具雙面高精度微結構之光學與生醫元件之潛能。

In recent years, microstructure is widely used in many key optical and bio-medical components. How to effectively and efficiently fabricate optical and bio-medical components with superior performance are the essential challenges. This requires a very accurate shape replication of microstructures. The plate-to-plate hot embossing technique is the most possibility of mass production method for replication of double-sided micro/nano structures with high precision and quality. The belt-type UV-curing imprinting technique is a continuous, the fastest and efficient production method for replication of micro/nano structures. This research is devoted to the replication of v-groove microstructures on double-sided large-area plates using advanced hot embossing and belt-type UV-curing imprinting.
However, the conventional uniform heating hot embossing technique as the free boundary of open die forging leads to variation. In this research, three techniques are implemented. They are the conventional uniform heating technique, the non-uniform pressure compensating technique and the fixed boundary hot embossing technique. The temperature distribution of the hot-plates of the fixed boundary hot embossing technique are designed to keep the temperature at the center part higher than the outer part on the surface of substrates. This phenomenon changes free boundary in conventional uniform heating into fixed boundary. The results demonstrate the potential of the fixed boundary hot embossing technique for the fabrication of large-area high brightness products with double-sided microstructures. The experimental results show the great potential of the fixed boundary hot embossing technique for the mass production of high brightness products.
The UV resin of the conventional UV-curing imprinting technique is cured by direct irradiation from the bottom/top. It is difficult to replicate microstructure on both surfaces of plate. The non-uniform pressure distribution of substrate, which is higher beneath the rollers, can influence performance of product. The technique combines the side-emitting UV-curing, air-bearing press and a belt-type method, to replicate patterns on the polymer substrate. The side-emitting UV-curing method allows the replication of double-sided micro/nano structures. The air-bearing is employed to increase the contact area and enhance the pressure uniformity. The uniform pressure distribution on the substrate has been proven by using pressure sensitive films. The transcription rate of microstructures has been improved significantly. The side-emitting UV-curing air-bearing assisted belt-type imprinting technique has been proved an effective and efficient method for mass production of microstructures on both surface of transparent polymeric plates for optical or bio-medical applications.

致謝 I
摘要 II
Abstract III
目錄 V
表目錄 X
圖目錄 XI
第一章 導論 1
1.1 前言 1
1.2 微熱壓印成型技術 2
1.2.1 板對板熱壓成型技術 2
1.2.2 滾輪熱壓印成型技術 3
1.2.3 皮帶輪熱壓印成型技術 4
1.3 紫外光固化樹脂轉印技術 5
1.3.1 板對板紫外光固化樹脂轉印技術 5
1.3.2 滾輪紫外光固化樹脂轉印技術 6
1.3.3 皮帶輪式紫外光固化樹脂轉印技術 6
1.3 氣體輔助壓印技術提升壓力均勻度 7
1.4 各技術優缺點綜整 8
1.5 研究動機、目標與目的 13
1.6 論文架構 18
第二章 文獻回顧 28
2.1 微熱壓印成型文獻 28
2.1.1 板對板微熱壓印成型技術文獻 28
2.1.2 滾輪微熱壓印成型技術文獻 30
2.1.3 皮帶輪微熱壓印成型技術文獻 30
2.2 紫外光樹脂固化轉印文獻 31
2.2.1 板對板紫外光樹脂固化轉印技術文獻 31
2.2.2 滾輪紫外光樹脂固化轉印技術文獻 32
2.2.3 皮帶輪紫外光樹脂固化轉印技術文獻 33
2.3 氣體輔助轉印成型文獻 33
2.4 綜合歸納 36
第三章 具新型非均溫加熱型式壓板之微熱壓技術實驗設置與流程規劃 55
3.1 實驗目的及整體流程規劃 55
3.1.1 實驗目的說明 55
3.1.2 整體實驗流程規劃 57
3.2設備設置 58
3.2.1 大面積微結構熱壓機台能力說明 58
3.2.2 模治具設計說明 59
3.2.3 油壓閥件更換說明 59
3.2.4 電控設備更換說明 59
3.2.5 人機介面更新說明 59
3.2.6 三種技術之壓板設置與加熱冷卻裝置 60
3.2.7 製程用基材(PMMA) 61
3.2.8 製程用模具 61
3.2.9 一般微熱壓印製程步驟 62
3.3 厚板製程 63
3.4 薄板製程 64
3.5 量測設備 64
3.5.1光學顯微鏡 64
3.5.2雷射顯微鏡 64
3.5.3光量測儀 65
第四章 各技術製成成品展現之比較 73
4.1 三技術製程厚板及其展現 73
4.1.1複製均勻性 73
4.1.2厚度均勻性與製程前後厚度變化 74
4.1.3光學展現 75
4.2均溫與非均溫微熱壓印技術製程薄板及其展現 75
4.2.1模擬均勻加熱微熱壓印技術製程步驟 76
4.2.2複製均勻性 77
4.2.3厚度均勻性與製程前後厚度變化 77
4.3本章結論 77
第五章 各技術展現差異原因探討 88
5.1 成品展現差異原因探討 88
5.1.1 各技術壓板溫度模擬與實際量測 88
5.1.2 微結構轉寫率與複製均勻性 89
5.1.3 厚度均勻性與製程前後厚度變化 90
5.1.4 光學展現 91
5.2量產可行性說明 92
5.2.1 成品外觀與光學展現 92
5.2.2 三技術之再現性 93
5.3本章結論 94
第六章 非均溫熱滾壓印技術 113
6.1 實驗目的、流程規劃與製程設備 113
6.1.1 實驗目的與流程規劃說明 113
6.1.2 設備設置與製程流程說明 114
6.2 均溫熱滾壓技術成品之轉寫狀況 115
6.3 非均溫熱滾壓技術成品之轉寫狀況 116
6.4 綜合討論 117
6.5 本章結論 118
第七章 皮帶輪側入光源氣浮軸承轉印技術實驗設置與流程規劃 127
7.1 實驗目的與流程規劃與製程設備 127
7.1.1 實驗目的 127
7.1.2 整體實驗流程規劃 128
7.2 設備設置與規格能力 130
7.3 製程步驟 132
7.4 側入式光源簡介 133
7.5 氣浮軸承簡介 134
第八章 皮帶輪側入光源氣浮軸承轉印技術 151
8.1 壓印均勻性探討 151
8.1.1 壓力感測片相關說明 152
8.1.2 相關公式代號說明 152
8.1.3 氣浮軸承與平板 153
8.1.4 氣浮軸承與皮帶輪 154
8.1.5 氣浮軸承與氣囊輪 157
8.2 側入與直下式光源製程差異展現 158
8.3 製程前試驗 160
8.4 皮帶輪側入式光源氣浮軸承轉印技術成品展現 160
8.5 皮帶輪側入光源轉印技術成品展現 161
8.6 成品展現比較說明 162
8.7 本章結論 163
第九章 結論與未來展望 194
9.1 研究成果總結 194
9.1.1 非均溫熱壓印技術 194
9.1.2 皮帶輪側入光源氣浮軸承轉印技術 195
9.2 創始貢獻 195
9.3 未來研究方向與展望 196
參考文獻 200
附錄A 壓板製造程序 207
A.1 壓板材料及其加工程序 207
A.2阻水元件之製作 208
A.3壓板相關元件組裝 209
附錄B 最佳參數之選用規則 223
B.1微熱壓製程參數相關說明 223
B.1.1微熱壓製程所需之溫度概述 223
B.1.2微熱壓製程所需之壓力概述 224
B.2參數選用說明 225
B.2.1初始參數選用說明 225
B.2.2最佳參數選用說明 226



[1]Kimerling T E, Liu W, Kim B H and Yao D 2006 Rapid hot embossing of polymer microfeatures Microsyst. Technol. 12 730-735
[2]Wu J T and Yang S Y 2010 A gasbag-roller-assisted UV imprinting technique for fabrication of a microlens array on a PMMA substrate J. Micromech. Microeng. 20, 085038-085044
[3]Huang C F, Shen Y K, Lin Y, Yang J C and Wu C W 2008 Luminance and brightness field distribution of light guiding plate for backlight panel (BLP) by micro molding Polym. Adv. Technol 19 1887-1893
[4]Wu C H and Lu C H 2008 Fabrication of an LCD light guide plate using closed-die hot embossing J. Micromech. Microeng. 18, 035006-035015
[5]Yang S Y, Nian S C and Sun I C 2002 Flow visualization of filling process during micro-injection Int. Polym. Process. 17 354-360
[6]Nian S C and Yang S Y 2004 Flow visualization of filling with aid of colored billets during impact micro-injection molding Int. Polym. Process. 19 402-107
[7]Jenoptik Mikrotechnik, Datasheet of HEX03 hot embossing system. (2002)
[8]Gale M T 2003 Replicated Diffractive Optics and Micro-Optics Optics & Photonics News. 14 24-29
[9]Heckele M and Schomburg W K 2004 Review on micro molding of thermoplastic polymers J. Micromech. Microeng 14 R1-R14
[10]羅金德,超音波加熱壓印微結構之研究,臺灣大學碩士論文,2001年6月
[11]張哲豪,流體微熱壓製程開發研究,臺灣大學博士論文,2004年6月
[12]Gale M T 1997 Replication techniques for diffractive optical elements”, Microelectron. Eng. 34 321-339
[13]謝正倫,滾輪微結構壓印製程開發研究,臺灣大學碩士論文,2005年6月
[14]Heydermana L J, Schifta H, Davida C, Gobrechta J and Schweizerb T 2000 Flow behaviour of thin polymer films used for hot embossing lithography Microelectron. Eng. 54 229-245
[15]Huang P H, Huang T C, Sun Y T and Yang S Y 2008 Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing Opt. Express 16 3041-3048
[16]Huang P H, Huang T C, Sun Y T, and Yang S Y 2008 Large-area and thin light guide plate fabricated using UV base imprinting Opt. Express 16 15033-15038
[17]材料世界網http://www.materialsnet.com.tw/DocPrint.aspx?id=8668,2011年
[18]Lee H, Hong S, Yang K and Choi K 2006 Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography Appl. Phys. Lett. 88 143112-143114
[19]Ahn S H, Cha J W, Myung H, Kim S M and Kang S 2006 Continuous ultraviolet roll nanoimprinting process for replicating large-scale nano- and micropatterns Appl. Phys. Lett. 89 2131011-2131013
[20]許淑雯,氣壓輔助滾輪紫外光轉印製程之開發與應用,臺灣大學碩士論文,2007年6月
[21]Park S Y, Choi K B, Kim G H and Lee J J 2009 Nanoscale patterning with the double-layered soft cylindrical stamps by means of UV-nanoimprint lithography Microelectron. Eng. 86 604–607
[22]Ahn S H, Kim J S and L J Guo 2007 Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate J. J. Vac. Sci. Technol. 6 2044-2049
[23]Guo L J and Ahn S H 2009 Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting ACS Nano 3 2304–2310
[24]吳景棠,氣囊輪紫外光樹脂滾壓製程技術之研發及應用,臺灣大學博士論文,2010年7月
[25]莊岱融,PDMS環膜結合氣囊滾輪複製UV樹脂微奈米結構製程的之研發及應用,臺灣大學碩士論文,2011年6月
[26]Bender M, Otto M and Hadam B 2000 Fabrication of nanostructures using a UV-based imprint technique Microelectron. Eng. 53 233-236
[27]Castillo J and Barber J R 1997 Lateral contact of slender prismatic bodies Proceedings of the Royal Society of London 453 2397-2412
[28]Yang S Y, Cheng F S, Xu S W, Huang P H, and Huang T C 2008 Fabrication of Microlens Arrays Using UV Micro-Stamping with Soft Roller and Gas-pressurized Platform Microelectron. Eng. 85 603-609
[29]Chang J H and Yang S Y 2003 Gas Pressurized Hot Embossing for Transcription of Micro-features Microsyst. Technol. 10 76-80
[30]Worgull M, Heckele M and Schomburg W K 2005 Large-scale hot embossing Microsyst. Technol. 12 110-115
[31]Chang J H and Yang S Y 2005 Development of Fluid-Based Heating and Pressing Systems for Micro Hot Embossing Microsyst. Technol. 11 396-403
[32]Peroz C, Dhuey S, Volger M, Wu Y, Olynick D and Cabrini S 2010 Step and repeat UV nanoimprint lithography on pre-spin coated resist film: a promising route for fabricating nanodevices Nanotechnol. 21 445301-4453065
[33]Weng Y J, Weng Y C, Yang S Y and Wong J L 2008 Study on the formation defect of nano imprinted optical waveguide devices and nano-indentation detection Polym. Adv. Technol. 19, 1704-1709
[34]http://www.giichinese.com.tw/Global Information
[35]http://www.nkttcc.com/南京東海天力國際貿易有限公司
[36]Bartolini R, Hannan W, Karlsons D, Lurie M 1970 Embossed hologram motion pictures for television playback Appl. Opt. 9 2283-2290
[37]Gale M T, Kane J, Knop K, 1978 ZOD images: embossable surface-relief structures for color and black-and-white reproduction J. Appl. Photogr. Eng. 4 41
[38]Ulrich R, Webber H P, Chandross E A, Tomlinsion W J, Franke E A, 1972 Embossed optical waveguides Appl. Phys. Lett. 20 213-215
[39]Becker E W, Ehrfeld W, Hagmann P, Maner A, Münchmeyer D, 1986 Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic molding (LIGA process)“, Microelectron. Eng. 4 35-36
[40]Deguchi K, Takeuchi N, Shimizu A 2001 Evaluation of press-uniformity using a pressure sensitive film and calculation of wafer distortions caused by mold press in imprint lithography Microprocesses and Nanotechnology Conference 100-101
[41]Lin C R, Chen R H, Hung C 2002 The characterisation and finite-element analysis of a polymer under hot pressing Int. Journal of Adv. Manufacturing Technol. 20 230-235
[42]Lee H S, Lee S K, Kwon T H, Lee S S 2002 Birefringence Distribution in V-grooved optical parts by hot embossing process IEEE/LEOS Int. Conference on Opt. MEMS 135-136
[43]Tan H, Gilbertson A and Chou S Y 1998 Roller nanoimprint lithography Journal of Vac. Sci. Technol. B 16 3926-3928
[44]Makela T, Haatainen T and Majander P 2008 Continuous Double-Sided Roll-to-Roll Imprinting of Polymer Film Japanese Journal of Applied Physics, 47 5142–5144
[45]Willson C G, Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan S V and Ekerdt J G 1999 Step and Flash Imprint Lithography: A new approach to high resolution patterning Proc. SPIE 3676 379-389
[46]Dannberg P, Bierbaum R, Erdmann L, and Braeuer A 1999 Wafer scale integration of micro-optic and optoelectronic elements by polymer UV reaction molding Proceedings of SPIE -The Int. Society for Opt. Eng. 3631 244-251
[47]Kim S M, Kim D, Kang S and Ahn S 2003 Replication of micro-optical components by UV-molding process Proceedings of SPIE -The Int. Society for Opt. Eng. 4984 63-69
[48]Yang B, Peng C, and Pang S W 2006 Multiple level nanochannels fabricated using reversal UV nanoimprint J. Vac. Sci. Technol. B 24 2984-2987
[49]Kehagias N, Rebound V, Chansin G, Zelsmann M, Jeppeses C, Schuster C, Kubenz M, Reuther F, Gruetzner G and Sotomayor T C M 2005 Reverse-contact UV nanoimprint lithography for multilayered structure fabrication Nanotechnology 18 2954-2957
[50]Han K S, Hong S H and Lee H 2007 Fabrication of complex nanoscale structures on various substrates Appl. Phys. Lett. 91 123118- 123118-3
[51]黃俊瑋,以類LIGA技術與紫外光固化膠製作微透鏡陣列之新式製程設計探討,中興大學碩士論文,2004年6月
[52]翁永春,氣輔軟模紫外光固化微奈米壓印製程應用於製作光波導元件之研究,臺灣大學碩士論文,2005年6月
[53]黃培穎,氣體輔助軟模壓印技術之研發應用於製作SU-8脊梁式光波導元件,臺灣大學碩士論文,2006年6月
[54]Liu S J and Chang Y C 2007 A novel soft-mold roller embossing method for the rapid fabrication of micro-blocks onto glass substrate J. Micromech. Microeng. 17 172-179
[55]Gao H, Tan H, Zhang W, Morton K, and Chou S Y 2006 Air Cushion Press for Excellent Uniformity, High Yield, and Fast Nanoimprint Across a 100 mm Field Nano Lett. 6 2438 -2441
[56]Vratzov B, Fuchs A, Lemme M, Henschel W and Kurz H 2003 Large scale ultraviolet-based nanoimprint lithography J. Vac. Sci. Technol. B 21 2760-2764
[57]Lee H and Jung G Y 2005 Wafer to wafer nano-imprinting lithography with monomer based thermally curable resin Microelectronic Eng. 77 168-174
[58]Lee H, Hong S, Yang K and Choi K 2006 Fabrication of nano-sized resist patterns on flexible plastic film using thermal curing nano-imprint lithography Microelectron. Eng. 83 323-327
[59]Berre M L, Shi J, Crozatier C, Casqquillars G V and Chen Y 2007 Micro-aspiration assisted lithography Microelectron. Eng. 84 864-867
[60]Chang J H, Cheng F S, Chao C C, Weng Y C, Yang S Y and Wang L A 2005 Direct imprinting using soft mold and gas pressure for large area and curved surfaces J. Vac. Sci. Technol. A, 23 1687-1690
[61]Cheng F S, Yang S Y, and Chen C C 2008 Novel hydrostatic pressuring mechanism for soft UV-inprinting processes J. Vacuum Sci. Technol. B, 26 132-136
[62]Juang Y J, Lee L J and Koelling K W 2002 Hot embossing in microfabrication. Part I: experimental. Polym. Eng. Sci., 42, 539-550
[63]www.newwayairbearings.com

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top