|
Ahlborn, B., Chapman, S., Stafford, R., & Harper, R. (1997). Experimental simulation of the thrust phases of fast-start swimming of fish. The Journal of Experimental Biology, 200(Pt 17), 2301–12. Archer, S., & Johnston, I. (1989). Kinematics of labriform and subcarangiform swimming in the Antarctic fish Notothenia neglecta. Journal of experimental biology, 210, 195–210. Basu, B. C., & Hancock, G. J. (1978). The unsteady motion of a two-dimensional aerofoil in incompressible inviscid flow. Journal of Fluid Mechanics, 87(01), 159–178. Blake, R. W., & Chan, K. H. S. (2006). Models of the turning and fast-start swimming dynamics of aquatic vertebrates. Journal of Fish Biology, 69(6), 1824–1836. Borazjani, I., Sotiropoulos, F., Tytell, E. D., & Lauder, G. V. (2012). Hydrodynamics of the bluegill sunfish C-start escape response: three-dimensional simulations and comparison with experimental data. The Journal of Experimental Biology, 215(Pt 4), 671–84. Chen, H., Peng, J. C., & Xu, G. (2011). Propulsive efficiency analysis on C-start of robot fish. Advanced Materials Research, 199-200, 62–67. Chopra, M. G. (1976). Large amplitude lunate-tail theory of fish locomotion. Journal of Fluid Mechanics, 74(01), 161–182. Covell, J. W., Smith, M., Harper, D. G., & Blake, R. W. (1991). Skeletal muscle deformation in the lateral muscle of the intact rainbow trout Oncorhynchus mykiss during fast start maneuvers. The Journal of Experimental Biology, 156, 453–66. Czuwala, P., Blanchette, C., Varga, S., & Long, H. H. (1999). A mechanical model of the rapid body flexures of fast-starting fish. International Symposium on Unmanned Untethered Submersible Technology, (1973), 415–426. Danos, N., & Lauder, G. V. (2012). Challenging zebrafish escape responses by increasing water viscosity. The Journal of Experimental Biology, 215(Pt 11), 1854–62. Domenici, P., & Blake, R. (1991). The kinematics and performance of the escape response in the angelfish (Pterophyllum eimekei). Journal of Experimental Biology, 205, 187–205. Domenici, P., & Blake, R. (1993). Escape trajectories in angelfish (Pterophyllum eimekei). Journal of Experimental Biology, 272, 253–272. Domenici, P., & Blake, R. (1997). The kinematics and performance of fish fast-start swimming. Journal of Experimental Biology, 1178, 1165–1178. Eaton, R C, Bombardieri, R. a, & Meyer, D. L. (1977). The mauthner-initiated startle response in teleost fish. The Journal of Experimental Biology, 66(1), 65–81. Eaton, R C, DiDomenico, R., & Nissanov, J. (1988). Flexible body dynamics of the goldfish C-start: implications for reticulospinal command mechanisms. The Journal of Neuroscience, 8(8), 2758–2768. Eaton, R C., Lavender, W. A., & Wieland, C. M. (1982). Alternative neural pathways initiate fast-start responses following lesions of the mauthner neuron in goldfish. Journal of Comparative Physiology, 145(4), 485–496. Ellerby, D. J., & Altringham, J. D. (2001). Spatial variation in fast muscle function of the rainbow trout Oncorhynchus mykiss during fast-starts and sprinting. The Journal of Experimental Biology, 204(Pt 13), 2239–50. Epps, B., & Techet, A. (2007). Impulse generated during unsteady maneuvering of swimming fish. Experiments in Fluids. Frith, H., & Blake, R. (1995). The mechanical power output and hydromechanical efficiency of northern pike (Esox lucius) fast-starts. Journal of Experimental Biology, 1873, 1863–1873. Gray, J. (1933). Directional control of fish movement. Proceedings of the Royal Society B: Biological Sciences, 113(781), 115–125. Harper, D., & Blake, R. (1989). Short communication: A critical analysis of the use of high-speed film to determine maximum accelerations of fish. Journal of Experimental Biology, 471, 465–471. Harper, D., & Blake, R.. (1991). Prey capture and the fast-start performance of northern pike Esox lucius. Journal of Experimental Biology, 192, 175–192. Harper, D., & Blake, R. (1989). On the error involved in high-speed film when used to evaluate maximum accelerations of fish. Canadian Journal of Zoology, 67(8), 1929–1936. Johnston, I., & Leeuwen, J. (1995). How fish power predation fast-starts. Journal of Experimental Biology, 1861, 1851–1861. Kohashi, T., Nakata, N., & Oda, Y. (2012). Effective sensory modality activating an escape triggering neuron switches during early development in zebrafish. The Journal of Neuroscience, 32(17), 5810–20. Kuethe, A. M., & Chow, C.-Y. (1998). Foundations of aerodynamics : bases of aerodynamic design. New York: J. Wiley. Lighthill, M J. (1971). Large-amplitude elongated-body theory of fish locomotion. Proceedings of the Royal Society of London. Series B, Biological Sciences, 179(1055), 125–138. Lighthill, M. J. (1960). Note on the swimming of slender fish. Journal of Fluid Mechanics, 9(02), 305–317. Liu, G., Yu, Y. L., & Tong, B. G. (2011). A numerical simulation of a fishlike body’s self-propelled C-start. (J. Li & S. Fu, Eds.)AIP Conference Proceedings, 1376(1), 480–483. Maskell, E. C. (1972). On the Kutt-Joukowski condition in two-dimensional unsteady flow. Unpublished note, Roy. Aircraft Establishment, Farnborough. Mason, R., & Burdick, J. W. (2000). Experiments in carangiform robotic fish locomotion. Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on, 1, 428–435. Niesterok, B., & Hanke, W. (2013). Hydrodynamic patterns from fast-starts in teleost fish and their possible relevance to predator-prey interactions. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 199(2), 139–49. Ojima, A., & Kamemoto, K. (2005). Numerical simulation of unsteady flows around a fish. Proc. of ICVFM2005, Yokohama, Japan, Nov. Poling, D., & Telionis, D. (1986). The response of airfoils to periodic disturbances-The unsteady Kutta condition. AIAA Journal. Spierts, I., & Leeuwen, J. (1999). Kinematics and muscle dynamics of C- and S-starts of carp (Cyprinus carpio L.). The Journal of Experimental Biology, 202(Pt 4), 393–406. Tytell, E. D., & Lauder, G. V. (2002). The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. The Journal of Experimental Biology, 205(Pt 17), 2591–603. Tytell, E. D., & Lauder, G. V. (2008). Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus. The Journal of Experimental Biology, 211(Pt 21), 3359–69. Wakeling, J., & Johnston, I. (1999). Body bending during fast-starts in fish can be explained in terms of muscle torque and hydrodynamic resistance. The Journal of Experimental Biology, 202 (Pt 6), 675–82. Wakeling, J., Kemp, K., & Johnston, I. (1999). The biomechanics of fast-starts during ontogeny in the common carp cyprinus carpio. The Journal of Experimental Biology, 202 Pt 22, 3057–67. Wakeling, J. M., & Johnston, I. (1998). Muscle power output limits fast-start performance in fish. The Journal of Experimental Biology, 201(Pt 10), 1505–26. Watts, M. N. (2006). Emulating the fast-start swimming performance of the chain pickerel (Esox niger) using a mechanical fish design. Doctoral dissertation, Massachusetts Institute of Technology. Webb, P. (1975). Acceleration performance of rainbow trout Salmo gairdneri and green sunfish Lepomis cyanellus. The Journal of Experimental Biology, 451–465. Webb, P. (1976). The effect of size on the fast-start performance of rainbow trout Salmo cairdneri, and a consideration of piscivorous predator-prey interactions. Journal of Experimental Biology, 157–178. Webb, P. (1978). Fast-start performance and body form in seven species of teleost fish. The Journal of Experimental Biology, 311–326. Webb, P. (1981). The effect of the bottom on the fast start of flatfish Citharichthys stigmaeus. Fishery Bulletin, 79(2), 271–276. Webb, P. (1984). Body form, locomotion and foraging in aquatic vertebrates. American Zoologist, 24(1), 107–120. Webb, P., Sims, D., & Schultz, W. W. (1991). The effects of an air/water surface on the fast-start performance of rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 226(1), 219–226. Weihs, D. (1972). A Hydrodynamical Analysis of Fish Turning Manoeuvres. Proceedings of the Royal Society B: Biological Sciences, 182(1066), 59–72. Weihs, D. (1973). The mechanism of rapid starting of slender fish. Biorheology, 10(3), 343–350. Wolfgang, M. J., Anderson, J. M., Grosenbaugh, M. A., Yue, D. K., & Triantafyllou, M. S. (1999). Near-body flow dynamics in swimming fish. Journal of Experimental Biology, 202(17), 2303–2327. Wu, T. (1961). Swimming of a waving plate. Journal of Fluid Mechanics, 10(03), 321–344. Wu, T. (1971a). Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. Journal of Fluid Mechanics, 46(02), 337–355. Wu, T. (1971b). Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems. Journal of Fluid Mechanics, 46, 521–544. Wu, T. (1971c). Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins. Journal of Fluid Mechanics, 46, 545–568. Yeo, K. S., Ang, S. J., & Shu, C. (2010). Simulation of fish swimming and manoeuvring by an SVD-GFD method on a hybrid meshfree-Cartesian grid. Computers & Fluids, 39(3), 403–430.
|