(3.236.214.19) 您好!臺灣時間:2021/05/06 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張繼文
研究生(外文):Chi-Wen Chang
論文名稱:運用噴墨式感測器於切削溫度之偵測
論文名稱(外文):Applying Ink-jet Patterned Sensor in On-line Cutting Temperature Monitoring
指導教授:李貫銘李貫銘引用關係
指導教授(外文):Kuan-Ming Li
口試委員:楊宏智廖英志黃振康
口試委員(外文):Hong-Tsu YoungYing-Chih LiaoChen-Kang Huang
口試日期:2013-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:44
中文關鍵詞:切削溫度噴墨式感測器
外文關鍵詞:cutting temperatureink-jet-printed thermistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在切削作業中,刀尖溫度之量測方法仍有諸多困難,因為最高溫度發生位置位於刀具與切屑之接觸面,若使用紅外線熱像儀是容易受到切屑或切削液的干擾。若使用熱電偶或是熱敏電阻,亦難以直接到達該溫度面作量測,且必須於刀具做鑽孔加工,增加成本。
為了提高監控系統在經濟上之效益,本研究開發出適用於車削加工之溫度感測器,此感測器採用噴墨式熱敏電阻,擁有相當高之熱敏指標B值,使得溫度量測範圍以及分辨率皆得以提升。另一方面採用噴墨製程,實現感測元件微小化以及陣列量測的可能。不但能夠大幅降低感測器對溫度之反應時間,更可以實現陣列溫度場之量測。為達成在線監控(online monitoring)之目標,本研究使用二維FTCS(forward time central space)有限差分法求解逆向熱傳問題(inverse heat conduction problem, IHCP)。利用噴墨式熱敏電阻量測之溫度與FTCS預測之結果比較,以逼近法推估刀尖平均溫度。
研究結果證實,本論文提出之溫度感測器可對溫度變化做出快速的預測。在後續切屑溫度驗證中,模型預測之表面溫度亦與切削溫度範圍吻合,由此確認本論文提出之溫度感測與預測方法具有相當之準確性。


In cutting, how to measure the tool tip temperature is always an issue. The highest temperature happens at the contact surface between the tool chip and swarfs, which is hard for non-contact methods such as infrared thermal imaging to measure the surface temperature since it is affected by the scattering swarfs and cutting fluid. For conventional contact measuring methods such as thermocouple or thermistor, additional drilling hole is needed to place the sensor in the designated position, which greatly increase the total cost, besides, it is hard to reach the exact contact surface to measure the real contact surface temperature.
To increase the economy effect for cutting process monitoring system, this research proposes a temperature sensor adapt to lathe cutting process. This sensor is an ink-jet-printed thermistor with high thermal sensitive B parameter, which greatly increases the temperature measuring range and resolution. In addition, the ink-jet-printed method realizes the sensor microminiaturization and matrix measuring, which greatly reduced the sensing response time and can measure the temperature distribution matrix.
Meanwhile, to realize the online monitoring capability, this research also proposes a 2-D thermal conduction model with FTCS (Forward Time Central Space) method to solve the inverse heat conduction problem. And by using bisection method between the measured temperature and the 2-D thermal conduction model, the average tip temperature can be solved.
The research result shows that the proposed ink-jet-printed thermistor sensors with 2-D thermal conduction model do provide a fast prediction capability to the temperature variation. And the predicted tip surface temperature lays in the same range with lathe swarfs, which proves the accuracy for the proposed temperature sensing technique from this research.


致謝……………………………………………………………………………….I
中文摘要………………………………………………………………………...II
英文摘要………………………………………………………………………..III
目錄……………………………………………………………………………..IV
圖目錄…………………………………………………………………………..VI
表目錄………………………………………………………………………...VIII
Abstract III
1. 第一章 緒論 1
1.1 研究動機與目的 1
1.2 論文架構 2
2. 第二章 文獻回顧 3
2.1 以切削溫度在線監控之文獻回顧 3
2.2 切削溫度數學模式之探討 4
2.3 熱敏電阻 7
2.4 NTC Thermistor 物理參數說明 8
2.5 計算接觸面積 10
3. 第三章 研究方法 11
3.1 切削溫度之數學模式 11
3.2 分析之刀片模型 11
3.3 模型簡化方法 13
3.4 FTCS暫態熱傳導模型 16
3.5 逆向熱傳導問題 19
4. 第四章 噴墨式感測器 21
4.1 噴墨式熱敏電阻 21
4.2 溫度感測元件的製造程序 21
4.3 液膜燒結溫度 22
4.4 溫度感測元件尺寸 22
5. 第五章 實驗設計與規劃 24
5.1 實驗規劃 24
5.2 實驗器具與材料 26
5.3 實驗設備 28
5.4 非切削實驗設計 34
5.4.1 實驗步驟 35
5.5 切削實驗設計 36
5.5.1 實驗步驟 36
5.6 裝設噴墨式熱感測器於車刀 37
6. 第六章 實驗結果分析與討論 39
6.1 非切削實驗驗證結果 39
6.2 預估穩態溫度 40
6.3 切削實驗驗證結果 41
7. 第七章 結論與未來展望 42
7.1 結論 42
7.2 未來展望 43
參考文獻 44


[1]N. Abukhshim, P. Mativenga, and M. Sheikh, "Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining," International Journal of Machine Tools and Manufacture, vol. 46, pp. 782-800, 2006.
[2]D. A. Stephenson, "Assessment of Steady-State Metal Cutting Temperature Models Based on Simultaneous Infrared and Thermocouple Data," Journal of Engineering for Industry, vol. 113, pp. 121-128, 1991.
[3]A. Basti, T. Obikawa, and J. Shinozuka, "Tools with built-in thin film thermocouple sensors for monitoring cutting temperature," International Journal of Machine Tools and Manufacture, vol. 47, pp. 793-798, 2007.
[4]W. Grzesik, "Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique," International Journal of Machine Tools and Manufacture, vol. 46, pp. 651-658, 2006.
[5]Y. Dogu, E. Aslan, and N. Camuscu, "A numerical model to determine temperature distribution in orthogonal metal cutting," Journal of Materials Processing Technology, vol. 171, pp. 1-9, 2006.
[6]D. W. Yen and P. K. Wright, "A Remote Temperature Sensing Technique for Estimating the Cutting Interface Temperature Distribution," Journal of Engineering for Industry, vol. 108, pp. 252-263, 1986.
[7]a. B. T. C. K.J. Trigger, "Analytical evaluation of metal cutting temperatures," ASME vol. 73, pp. 109-120, 1951.
[8]D. L. R. a. W. N. Giedt, "Heat transfer and temperature distribution in a metal cutting tool," ASME vol. 78, p. 1507, 1956.
[9]A. Tay, M. Stevenson, and G. D. V. Davis, "Using the finite element method to determine temperature distributions in orthogonal machining," Proceedings of the institution of mechanical engineers, vol. 188, pp. 627-638, 1974.
[10]P. K. W. a. J. G. C. M.G. Stevenson, "Further developments in applying the finite element method to the calculation of temperature distributions in machining and comparisons with experiment," ASME, vol. 105, p. 149 1983.
[11]H.-T. Chen and S.-M. Chang, "Application of the hybrid method to inverse heat conduction problems," International journal of heat and mass transfer, vol. 33, pp. 621-628, 1990.
[12]H.-T. Chen, S.-Y. Lin, and L.-C. Fang, "Estimation of surface temperature in two-dimensional inverse heat conduction problems," International journal of heat and mass transfer, vol. 44, pp. 1455-1463, 2001.
[13]H.-T. Chen, S.-Y. Lin, H.-R. Wang, and L.-C. Fang, "Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems," International journal of heat and mass transfer, vol. 45, pp. 15-23, 2002.
[14]H.-T. Chen, X.-Y. Wu, and Y.-S. Hsiao, "Estimation of surface condition from the theory of dynamic thermal stresses," International journal of thermal sciences, vol. 43, pp. 95-104, 2004.
[15]A. Feteira, "Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective," Journal of the American Ceramic Society, vol. 92, pp. 967-983, 2009.
[16]J.-J. Salgon, F. Robbe-Valloire, J. Blouet, and J. Bransier, "A mechanical and geometrical approach to thermal contact resistance," International journal of heat and mass transfer, vol. 40, pp. 1121-1129, 1997.
[17]S. Iqbal, P. Mativenga, and M. Sheikh, "A comparative study of the tool–chip contact length in turning of two engineering alloys for a wide range of cutting speeds," The International Journal of Advanced Manufacturing Technology, vol. 42, pp. 30-40, 2009.
[18]V. Ostafiev, K. Weinert, S. Ostafiev, and A. Kharkevich, "Tool Heat Transfer in Orthogonal Metal Cutting," Journal of Manufacturing Science and Engineering, vol. 121, pp. 541-549, 1999.
[19]H. K. Kim and S. I. Oh, "Evaluation of heat transfer coefficient during heat treatment by inverse analysis," Journal of Materials Processing Technology, vol. 112, pp. 157-165, 2001.
[20]Y. Ning, M. Rahman, and Y. S. Wong, "Investigation of chip formation in high speed end milling," Journal of Materials Processing Technology, vol. 113, pp. 360-367, 2001.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔