(3.235.245.219) 您好!臺灣時間:2021/05/10 01:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳友生
研究生(外文):You-Sheng Chen
論文名稱:具垂直異向性鈷鐵硼合成亞鐵磁體薄膜的鐵磁共振研究
論文名稱(外文):Ferromagnetic resonance study on the perpendicular magnetic anisotropic CoFeB synthetic ferrimagnet
指導教授:吳文方
口試委員:張慶瑞姚永德陳恭
口試日期:2012-07-05
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:107
中文關鍵詞:磁性薄膜鐵磁共振垂直異向性鈷鐵硼
外文關鍵詞:magnetic thin filmFerromagnetic resonancePerpendicular anisotropyCoFeB
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於其獨特的磁特性,鈷鐵硼合金薄膜近年來引起了很大的注意。其獨特之處在於同時擁有很高的穿隧磁阻效應、垂直磁異向性以及軟鐵磁性。這些特性使得鈷鐵硼有機會應用於各樣的自旋電子元件,例如自旋力矩翻轉式記憶體(Spin transfer torque RAM, STT-RAM)、自旋力矩傳遞式共振器(STT-oscillator)以及高敏感度磁感應器。然而,對於具垂直磁異向性的氧化鎂/鈷鐵硼/非磁性金屬多層結構而言,鈷鐵硼隣近層的厚度、成長順序等都對於其磁特性有強烈的影響。這帶來了兩個問題:其一是這樣的影響力常被認為是由於隣近層在鈷鐵硼上產生的界面非均質性,而一般的靜態量測方法並不能夠量化地描述這樣的非均質性;其二是,這樣高度製程相關的特性變化,如果要合成鐵磁多層膜組成的磁性記憶體,那我們對於其中各層的特性的瞭解將會十分困難。由於一般的磁性量測方法並不能夠分離各鐵磁層的個別貢獻,在自旋電子元件的設計中,仍然只能使用單層鐵磁層結構的特性做為估算多層膜特性的依據。在本研究中,我們使用鐵磁共振的方法,以動態的自旋響應去研究鈷鐵硼的多層結構。企圖能提供更準確的數據以利於元件的設計。鐵磁共振,是一種對磁異向性以及非均質磁性很敏銳的動態量測方法。同時也能分別偵測到多層結構中的各層的特性。
本研究的步驟與結果分為以下五個部份。首先我們研究含單層鐵磁層的鉭/鈷鐵硼/鉭結構,藉由變換磁性層以及覆蓋層厚度的方式去研究鈷鐵硼/鉭界面上造成的元素混合帶來的非均質特性。接者,研究氧化鎂/鈷鐵硼/鉭以及鉭/鈷鐵硼/氧化鎂兩種不同成長順序的結構,結果顯示不同成長順序會同時影響鈷鐵硼的結晶、界面混合程度與垂直異向性。第三,我們研究了不含氧化鎂的合成亞鐵磁結構(鉭/鈷鐵硼/鉭/鈷鐵硼/鉭),鐵磁共振的結果指出中間鉭層的厚度會同時大幅影響其上層與下層的鈷鐵硼的磁化強度。第四是研究含有氧化鎂層並具有垂直異向性的合成亞鐵磁結構,即氧化鎂/鈷鐵硼/鉭/鈷鐵硼/氧化鎂。在這系列的實驗中,我們觀察到了不尋常的正交磁異向性以及下層鈷鐵硼的磁化強度大幅減少。最後,也是第五部份是使用釕替換鉭做為中間層。比較了含釕與鉭的亞鐵磁結構之後,我們發現含釕的結構中其下層鈷鐵硼有較低的磁化強度減少量,以及鈷鐵硼較低的結晶特性造成了其磁異向性的差別。
總結以上實驗成果,我們的鐵磁共振研究證實了界面混合及鈷鐵硼結晶的程度是受制於鈷鐵硼的鄰近金屬層的厚度及鍍膜順序。另一個重要發現是,鐵磁共振法有效率地偵測到合成亞鐵磁體中各層鈷鐵硼的磁異向性與半結構中單層鈷鐵硼特性確實有很顯著的差異,因此用上下兩個半結構的特質去預測完整結構的性質並非正確之舉。我們的研究結果顯示,鐵磁共振法可以應用在未來自旋電子元件設計前的特性測試。


CoFeB alloy thin film has attracted a lots of attention because its’ unique magnetic properties. Together with high tunneling magnetoresistance ratio (TMR), perpendicular magnetic anisotropy (PMA) and low magnetic damping, CoFeB (CFB) is a good candidate to be applied in spintronic devices, such as spin-torque-transfer (STT) memory devices, STT oscillator and high sensitive magnetic sensors. However, PMA of this kind of MgO/CFB/normal-metal structure is highly dependent on synthesis process. This problem lead to two issues: First, interfacial inhomogeneity is an important factor, but common used static methods are not sensitive to magnetic inhomogeneity. This makes it hard to discuss the mechanism of anisotropy resulted from different synthesis condition. Secondly, this highly process dependency makes it hard to predict the magnetic properties of each CFB layer in synthetic ferrimagnet (SyF) structure. Up to now, most design of SyF structures is still based on the single layer characterization.
In this work, ferromagnetic resonance (FMR) is utilized to study CFB thin film system dynamically to identify the accurate magnetic anisotropy, the inhomogeneity and the magnetization of each layer in SyF structures. Research steps and related results are composed as follow. First part, single layer CFB with capping and buffer Ta layers are studied, revealing that the interfacial inhomogeneity of CFB/Ta depends on the thickness of CFB. Second part is a study on MgO/CFB/Ta and Ta/CFB/MgO structures with PMA. FMR results show the difference in high order magnetic anisotropy and interface mixture between these two structures with different sequence of stacking. Third part is a study on CFB SyF without MgO. Our results show a strong influence of spacing Ta layer on both top and bottom CFB layer yielding different anisotropy and magnetization. Forth part contains results of MgO/CFB/Ta/CFB/MgO with PMA in various thickness of Ta-layer, showing an orthogonal configuration and a significant difference of magnetization between two CFB layers. Last part is the study on MgO/CFB/Ru/CFB/MgO. Comparison of Ru and Ta demonstrates a different rate of magnetization-suppression and a different degree of crystallization, which are the main reasons for different magnetic anisotropy in two CBF layers.
In conclusion, our study shows the method of FMR is an effective way to identify the interfacial inhomogeneity and crystallization of CFB, influenced by the type and thickness of neighbor metal layer and the order of deposition. Furthermore, FMR detects a significant difference of magnetic anisotropy between half MgO/CFB/Ta structures and full SyF. These results could be applied for the pre-testing of magnetic multilayeres for the future design of spintronic devices.


Acknowledgement i
Abstract v
List of publications vii
Contents ix
List of Figures xi
List of Tables xvii
Chapter 1 Introduction 1
1.1 History of spintronics 1
1.2 History of MgO/CFB multilayer structure 4
1.3 Motivation and organization of the thesis 13
Chapter 2 Theories 14
2.1 Model of magnetic anisotropy 14
2.1.1 Shape anisotropy 14
2.1.2 Crystal anisotropy 16
2.1.3 Anisotropy in thin-film systems 17
2.2 Ferromagnetic Resonance 20
2.2.1 Gyromagnetic behavior 20
2.2.2 Resonance Condition of FMR 21
2.2.3 Resonance condition in magnetic thin film 22
2.2.4 Calculation of resonance field of thinfilm 24
2.2.5 FMR for PMA thinfilm 27
2.2.5 g-value 28
2.3 FMR Linewidth in thin films 29
2.4 FMR in coupled tri-layer thin film system 31
2.3.1 Resonance conditions of coupled trilayer 32
2.3.2 Mode intensity 35
Chapter 3 Experimental Techniques 37
3.1 Ferromagnetic resonance 37
3.2 Sample preparation 38
3.2.1 magnetron-sputtering 38
3.2.2 Rapid thermal annealing (RTA) 40
3.2.3 Sequence and parameters of sputtering deposition 40
3.3 Other analysis techniques 41
3.3.1 SQUID 41
3.3.2 Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) 42
3.3.3 Atomic force microscope (AFM) 43
3.3.4 Profilometer 44
Chapter 4 Result and discussion 45
4.1 Thickness effect of Ta/CoFeB(x)/Ta thin film 45
4.1.1 Sample composition 45
4.1.2 Surface roughness 46
4.1.3 Magnetization measurement 49
4.1.4 FMR spectra 54
4.1.5 Discussion 61
4.2 Effect of capping layer thickness in Ta/CoFeB/Ta(x) thin film 62
4.3 MgO/CoFeB/Ta and Ta/CoFeB/MgO with PMA 67
4.3.1 MgO/CoFeB/Ta 68
4.3.2 Ta/CoFeB/MgO 68
4.3.3 FMR Linewidth of MgO/CFB/Ta and Ta/CFB/MgO 72
4.3.3 Discussion 74
4.4 Ta/CFB/Ta/CFB/Ta synthetic ferrimagnet (SyF) structure 75
4.4.1 Surface morphology 75
4.4.2 FMR results 77
4.4.3 Discussion 85
4.5 MgO/CFB/Ta/CFB/MgO SyF structures 86
4.5.1 As-grown MgO/CFB/Ta(x)/CFB/MgO 86
4.5.2 Annealed MgO/CFB/Ta(x)/CFB/MgO samples 89
4.5.3 Discussion 93
4.6 MgO/CFB/Ru(x)/CFB/MgO SyF structures 94
4.6.1 As-grown MgO/CFB/Ru(x)/CFB/MgO 94
4.6.2 Annealed MgO/CFB/Ru(x)/CFB/MgO 96
4.6.3 Discussion 98
Chapter 5 Conclusion 100
Bibliography 102



1.Baibich, M.N., et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 1988. 61(21): p. 2472-2475.
2.Fert, A., Nobel Lecture: Origin, development, and future of spintronics. Reviews of Modern Physics, 2008. 80(4): p. 1517-1530.
3.Dedkov, Y.S., et al., Growth and spin-resolved photoemission spectroscopy of the epitaxial α-Al[sub 2]O[sub 3]/Fe(110) system. Applied Physics Letters, 2002. 81(14): p. 2584.
4.Faure-Vincent, J., et al., High tunnel magnetoresistance in epitaxial Fe/MgO/Fe tunnel junctions. Applied Physics Letters, 2003. 82(25): p. 4507.
5.Yuasa, S., et al., Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater, 2004. 3(12): p. 868-71.
6.Djayaprawira, D.D., et al., 230% room-temperature magnetoresistance in CoFeB∕MgO∕CoFeB magnetic tunnel junctions. Applied Physics Letters, 2005. 86(9): p. 092502.
7.Luo, Y., et al., Co-rich magnetic amorphous films and their application in magnetoelectronics. Physical Review B, 2005. 72(1).
8.Wiese, N., et al., Antiferromagnetically coupled CoFeB∕Ru∕CoFeB trilayers. Applied Physics Letters, 2004. 85(11): p. 2020.
9.Ikeda, S., et al., Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature. Applied Physics Letters, 2008. 93(8): p. 082508.
10.Ikeda, S., et al., A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat Mater, 2010. 9(9): p. 721-4.
11.Kawahara, T., et al., Spin-transfer torque RAM technology: Review and prospect. Microelectronics Reliability, 2012. 52(4): p. 613-627.
12.Worledge, D.C., et al., Spin torque switching of perpendicular Ta∣CoFeB∣MgO-based magnetic tunnel junctions. Applied Physics Letters, 2011. 98(2): p. 022501.
13.Khalili Amiri, P., et al., Switching current reduction using perpendicular anisotropy in CoFeB–MgO magnetic tunnel junctions. Applied Physics Letters, 2011. 98(11): p. 112507.
14.Houssameddine, D., et al., Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat Mater, 2007. 6(6): p. 441-7.
15.Armaki, S.M.M., Spin Valves and Spin-Torque Oscillators with Perpendicular Magnetic Anisotropy Doctoral Thesis, 2012.
16.Zeng, Z., et al., High-Power Coherent Microwave Emission from Magnetic Tunnel Junction Nano-oscillators with Perpendicular Anisotropy. ACS Nano, 2012. 6(7): p. 6115-6121.
17.Greer, A.A., et al., Observation of boron diffusion in an annealed Ta/CoFeB/MgO magnetic tunnel junction with standing-wave hard x-ray photoemission. Applied Physics Letters, 2012. 101(20): p. 202402.
18.Lee, Y.M., et al., Giant tunnel magnetoresistance and high annealing stability in CoFeB∕MgO∕CoFeB magnetic tunnel junctions with synthetic pinned layer. Applied Physics Letters, 2006. 89(4): p. 042506.
19.Cha, J.J., et al., Atomic-scale spectroscopic imaging of CoFeB/Mg–B–O/CoFeB magnetic tunnel junctions. Applied Physics Letters, 2009. 95(3): p. 032506.
20.Yuasa, S., et al., Characterization of growth and crystallization processes in CoFeB∕MgO∕CoFeB magnetic tunnel junction structure by reflective high-energy electron diffraction. Applied Physics Letters, 2005. 87(24): p. 242503.
21.Wang, W.G., et al., In-situ characterization of rapid crystallization of amorphous CoFeB electrodes in CoFeB/MgO/CoFeB junctions during thermal annealing. Applied Physics Letters, 2009. 95(24): p. 242501.
22.Yang, Y., et al., Chemical diffusion: Another factor affecting the magnetoresistance ratio in Ta/CoFeB/MgO/CoFeB/Ta magnetic tunnel junction. Applied Physics Letters, 2012. 101(1): p. 012406.
23.Shimabukuro, R., et al., Electric field effects on magnetocrystalline anisotropy in ferromagnetic Fe monolayers. Physica E: Low-dimensional Systems and Nanostructures, 2010. 42(4): p. 1014-1017.
24.Yamanouchi, M., et al., Dependence of magnetic anisotropy on MgO thickness and buffer layer in Co20Fe60B20-MgO structure. Journal of Applied Physics, 2011. 109(7): p. 07C712.
25.Kozina, X., et al., A nondestructive analysis of the B diffusion in Ta–CoFeB–MgO–CoFeB–Ta magnetic tunnel junctions by hard x-ray photoemission. Applied Physics Letters, 2010. 96(7): p. 072105.
26.Read, J.C., P.G. Mather, and R.A. Buhrman, X-ray photoemission study of CoFeB∕MgO thin film bilayers. Applied Physics Letters, 2007. 90(13): p. 132503.
27.Jung, J.H., S.H. Lim, and S.R. Lee, Strong perpendicular magnetic anisotropy in an MgO/CoFeB/Pd unit structure with a thick CoFeB layer. Journal of Applied Physics, 2010. 108(11): p. 113902.
28.Cheng, C.-W., et al., Effect of cap layer thickness on the perpendicular magnetic anisotropy in top MgO/CoFeB/Ta structures. Journal of Applied Physics, 2011. 110(3): p. 033916.
29.Jang, S.Y., S.H. Lim, and S.R. Lee, Magnetic dead layer in amorphous CoFeB layers with various top and bottom structures. Journal of Applied Physics, 2010. 107(9): p. 09C707.
30.Zhu, T., et al., The study of perpendicular magnetic anisotropy in CoFeB sandwiched by MgO and tantalum layers using polarized neutron reflectometry. Applied Physics Letters, 2012. 100(20): p. 202406.
31.Hayakawa, J., et al., Current-Induced Magnetization Switching in MgO Barrier Magnetic Tunnel Junctions With CoFeB-Based Synthetic Ferrimagnetic Free Layers. IEEE TRANSACTIONS ON MAGNETICS, 2008. 44(7): p. 1962-1967.
32.Malinowski, G., et al., Magnetization dynamics and Gilbert damping in ultrathin Co[sub 48]Fe[sub 32]B[sub 20] films with out-of-plane anisotropy. Applied Physics Letters, 2009. 94(10): p. 102501.
33.Zhang, Y., et al., Study and tailoring spin dynamic properties of CoFeB during rapid thermal annealing. Applied Physics Letters, 2011. 98(4): p. 042506.
34.Bilzer, C., et al., Study of the dynamic magnetic properties of soft CoFeB films. Journal of Applied Physics, 2006. 100(5): p. 053903.
35.Manuilov, S.A., A.M. Grishin, and M. Munakata, Ferromagnetic resonance, magnetic susceptibility, and transformation of domain structure in CoFeB film with growth induced anisotropy. Journal of Applied Physics, 2011. 109(8): p. 083926.
36.Oogane, M., et al., Magnetic Damping in Ferromagnetic Thin Films. Japanese Journal of Applied Physics, 2006. 45(5A): p. 3889-3891.
37.Cullity, B.D., Introduction to magnetic materials1972, U.S.: Addison Wesley publishing.
38.M. Farle, B.M.-S., A. N. Anisimov, W. Platow, and K. Baberschke, Higher-order magnetic anisotropies and the nature of the spin-reorientation transition in face-centered-tetragonal Ni(001)/Cu(001). Physical Review B, 1997. 55(6): p. 3708.
39.Shigemi MIZUKAMI, Y.A.a.T.M., The Study on Ferromagnetic Resonance Linewidth for NM/80NiFe/NM (NM = Cu, Ta, Pd and Pt) Films. Jpn. J. Appl. Phys., 2001. 40(2A): p. 580.
40.Shankar, R., Principles of quantum mechanics1994, New York ad London: Plenum press.
41.McMichael, R.D., Ferromagnetic resonance linewidth models for perpendicular media. Journal of Applied Physics, 2004. 95(11): p. 7001.
42.Popova, E., et al., Ferromagnetic resonance in the epitaxial system Fe∕MgO∕Fe with coupled magnetic layers. Physical Review B, 2006. 74(22).
43.J Pelzl, R.M., D Spoddig,F Schreiber,J Pflaum and ZFrait2, Spin-orbit-coupling effects on g-value and damping factor of the ferromagnetic resonance in Co and Fe film. J. Phys.: Condens. Matter, 2003. 15: p. S451.
44.Farle, M., Ferromagnetic resonance of ultrathin metallic layers. Reports on Progress in Physics, 1998. 61: p. 755.
45.M Sparks, R.l.a.C.K., Ferromagnetic relaxation. I. Theory of the Relaxation of Uniform Precession and the Defenerate Spectrum in Insulator at Low temperature. Physical Review, 1961. 122(3): p. 791.
46.C. Chappert, K.L.D., P. Beauvilain, H Hurdequint and D Renard, Ferromagnetic resonance studies of very thin cobalt film on a gold substrate. physical Review B, 1986. 34(5): p. 3192.
47.Mills, R.A.a.D.L., Extrinsic contributions to the ferromagnetic resonance response of ultrathinfilms. physical Review B, 1999. 60(10): p. 7395.
48.Woltersdorf, G. and B. Heinrich, Two-magnon scattering in a self-assembled nanoscale network of misfit dislocations. Physical Review B, 2004. 69(18).
49.Lenz, K., et al., Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets. Physical Review B, 2006. 73(14).
50.Hoeppe, U. and H. Benner, Microstructure-related relaxation and spin-wave linewidth in polycrystalline ferromagnets. Physical Review B, 2005. 71(14).
51.Kalarickal, S., et al., Ferromagnetic resonance linewidth mechanisms in polycrystalline ferrites: Role of grain-to-grain and grain-boundary two-magnon scattering processes. Physical Review B, 2009. 79(9).
52.Lindner, J., et al., Two-magnon damping in thin films in case of canted magnetization: Theory versus experiment. Physical Review B, 2009. 80(22).
53.W. Platow, A.N.A., G. L. Dunifer, M. Farle, and K. Baberschke, Correlations between ferromagnetic-resonance linewidths and sample quality in the study of metallic ultrathin film. physical Review B, 1998. 58(9): p. 5611.
54.Suhl, H., Theory of the magnetic damping constant. IEEE TRANSACTIONS ON MAGNETICS, 1998. 34(4): p. 1834-1838.
55.McMichael, R., D. Twisselmann, and A. Kunz, Localized Ferromagnetic Resonance in Inhomogeneous Thin Films. Physical Review Letters, 2003. 90(22).
56.Baberschke, J.L.a.K., In situ ferromagnetic resonance: an ultimate tool to investigate the coupling in ultrathin
magnetic films. JOURNAL OF PHYSICS: CONDENSED MATTER, 2003. 15(4): p. R193.
57.Parkin, S., Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Physical Review Letters, 1991. 67(25): p. 3598-3601.
58.Bruno, P. and C. Chappert, Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Physical Review Letters, 1991. 67(12): p. 1602-1605.
59.Z. Zhang, L.Z., P.E. Wigen and K. Ounadjela, Angular dependent of ferromagnetic resonance in exchange-coupled Co/Ru/Co trilayer structure. Physical Review B, 1994. 50(9): p. 6094.
60.Baberschke, J.a.K., Ferromagnetic resonance in coupled ultrathin film. JOURNAL OF PHYSICS: CONDENSED MATTER, 2003. 15: p. S465.
61.Kelly, P.J. and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
62.Manual of Veeco innova SPM.
63.Kowalewski, M., C. Schneider, and B. Heinrich, Thickness and temperature dependence of magnetic anisotropies in ultrathin fcc Co(001) structures. Physical Review B, 1993. 47(14): p. 8748-8753.
64.Beaujour, J.M.L., et al., Ferromagnetic resonance study of polycrystalline cobalt ultrathin films. Journal of Applied Physics, 2006. 99(8): p. 08N503.
65.Kanak, J., et al., X-ray diffraction analysis and Monte Carlo simulations of CoFeB-MgO based magnetic tunnel junctions. Journal of Applied Physics, 2013. 113(2): p. 023915.
66.Lavrijsen, R., et al., Magnetism in Co[sub 80-x]Fe[sub x]B[sub 20]: Effect of crystallization. Journal of Applied Physics, 2011. 109(9): p. 093905.
67.Lopusnik, R., et al., Different dynamic and static magnetic anisotropy in thin Permalloy™ films. Applied Physics Letters, 2003. 83(1): p. 96.
68.Li, M., G.C. Wang, and H.G. Min, Effect of surface roughness on magnetic properties of Co films on plasma-etched Si(100) substrates. Journal of Applied Physics, 1998. 83(10): p. 5313.
69.Cheng, T.-I., C.-W. Cheng, and G. Chern, Perpendicular magnetic anisotropy induced by a cap layer in ultrathin MgO/CoFeB/Nb. Journal of Applied Physics, 2012. 112(3): p. 033910.
70.Pelzl, J., et al., Spin orbit-coupling effects on g-value and damping factor of the ferromagnetic resonance in Co and Fe films. Journal of Physics: Condensed Matter, 2003. 15(5): p. S451-S463.
71.Hindmarch, A., et al., Origin of in-plane uniaxial magnetic anisotropy in CoFeB amorphous ferromagnetic thin films. Physical Review B, 2011. 83(21).
72.Swartzendruber, L.J. and E. Paul, The Fe−Ta (Iron-Tantalum) system. Bulletin of Alloy Phase Diagrams, 1986. 7(3): p. 254-259.
73.Swartzendruber, L.J. and B. Sundman, The Fe−Ru (Iron-Ruthenium) system. Bulletin of Alloy Phase Diagrams, 1983. 4(2): p. 155-160.
74.Watanabe, D., et al., Interlayer exchange coupling in perpendicularly magnetized synthetic ferrimagnet structure using CoCrPt and CoFeB. Journal of Physics: Conference Series, 2010. 200(7): p. 072104.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔