|
1.Baibich, M.N., et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 1988. 61(21): p. 2472-2475. 2.Fert, A., Nobel Lecture: Origin, development, and future of spintronics. Reviews of Modern Physics, 2008. 80(4): p. 1517-1530. 3.Dedkov, Y.S., et al., Growth and spin-resolved photoemission spectroscopy of the epitaxial α-Al[sub 2]O[sub 3]/Fe(110) system. Applied Physics Letters, 2002. 81(14): p. 2584. 4.Faure-Vincent, J., et al., High tunnel magnetoresistance in epitaxial Fe/MgO/Fe tunnel junctions. Applied Physics Letters, 2003. 82(25): p. 4507. 5.Yuasa, S., et al., Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater, 2004. 3(12): p. 868-71. 6.Djayaprawira, D.D., et al., 230% room-temperature magnetoresistance in CoFeB∕MgO∕CoFeB magnetic tunnel junctions. Applied Physics Letters, 2005. 86(9): p. 092502. 7.Luo, Y., et al., Co-rich magnetic amorphous films and their application in magnetoelectronics. Physical Review B, 2005. 72(1). 8.Wiese, N., et al., Antiferromagnetically coupled CoFeB∕Ru∕CoFeB trilayers. Applied Physics Letters, 2004. 85(11): p. 2020. 9.Ikeda, S., et al., Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature. Applied Physics Letters, 2008. 93(8): p. 082508. 10.Ikeda, S., et al., A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat Mater, 2010. 9(9): p. 721-4. 11.Kawahara, T., et al., Spin-transfer torque RAM technology: Review and prospect. Microelectronics Reliability, 2012. 52(4): p. 613-627. 12.Worledge, D.C., et al., Spin torque switching of perpendicular Ta∣CoFeB∣MgO-based magnetic tunnel junctions. Applied Physics Letters, 2011. 98(2): p. 022501. 13.Khalili Amiri, P., et al., Switching current reduction using perpendicular anisotropy in CoFeB–MgO magnetic tunnel junctions. Applied Physics Letters, 2011. 98(11): p. 112507. 14.Houssameddine, D., et al., Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat Mater, 2007. 6(6): p. 441-7. 15.Armaki, S.M.M., Spin Valves and Spin-Torque Oscillators with Perpendicular Magnetic Anisotropy Doctoral Thesis, 2012. 16.Zeng, Z., et al., High-Power Coherent Microwave Emission from Magnetic Tunnel Junction Nano-oscillators with Perpendicular Anisotropy. ACS Nano, 2012. 6(7): p. 6115-6121. 17.Greer, A.A., et al., Observation of boron diffusion in an annealed Ta/CoFeB/MgO magnetic tunnel junction with standing-wave hard x-ray photoemission. Applied Physics Letters, 2012. 101(20): p. 202402. 18.Lee, Y.M., et al., Giant tunnel magnetoresistance and high annealing stability in CoFeB∕MgO∕CoFeB magnetic tunnel junctions with synthetic pinned layer. Applied Physics Letters, 2006. 89(4): p. 042506. 19.Cha, J.J., et al., Atomic-scale spectroscopic imaging of CoFeB/Mg–B–O/CoFeB magnetic tunnel junctions. Applied Physics Letters, 2009. 95(3): p. 032506. 20.Yuasa, S., et al., Characterization of growth and crystallization processes in CoFeB∕MgO∕CoFeB magnetic tunnel junction structure by reflective high-energy electron diffraction. Applied Physics Letters, 2005. 87(24): p. 242503. 21.Wang, W.G., et al., In-situ characterization of rapid crystallization of amorphous CoFeB electrodes in CoFeB/MgO/CoFeB junctions during thermal annealing. Applied Physics Letters, 2009. 95(24): p. 242501. 22.Yang, Y., et al., Chemical diffusion: Another factor affecting the magnetoresistance ratio in Ta/CoFeB/MgO/CoFeB/Ta magnetic tunnel junction. Applied Physics Letters, 2012. 101(1): p. 012406. 23.Shimabukuro, R., et al., Electric field effects on magnetocrystalline anisotropy in ferromagnetic Fe monolayers. Physica E: Low-dimensional Systems and Nanostructures, 2010. 42(4): p. 1014-1017. 24.Yamanouchi, M., et al., Dependence of magnetic anisotropy on MgO thickness and buffer layer in Co20Fe60B20-MgO structure. Journal of Applied Physics, 2011. 109(7): p. 07C712. 25.Kozina, X., et al., A nondestructive analysis of the B diffusion in Ta–CoFeB–MgO–CoFeB–Ta magnetic tunnel junctions by hard x-ray photoemission. Applied Physics Letters, 2010. 96(7): p. 072105. 26.Read, J.C., P.G. Mather, and R.A. Buhrman, X-ray photoemission study of CoFeB∕MgO thin film bilayers. Applied Physics Letters, 2007. 90(13): p. 132503. 27.Jung, J.H., S.H. Lim, and S.R. Lee, Strong perpendicular magnetic anisotropy in an MgO/CoFeB/Pd unit structure with a thick CoFeB layer. Journal of Applied Physics, 2010. 108(11): p. 113902. 28.Cheng, C.-W., et al., Effect of cap layer thickness on the perpendicular magnetic anisotropy in top MgO/CoFeB/Ta structures. Journal of Applied Physics, 2011. 110(3): p. 033916. 29.Jang, S.Y., S.H. Lim, and S.R. Lee, Magnetic dead layer in amorphous CoFeB layers with various top and bottom structures. Journal of Applied Physics, 2010. 107(9): p. 09C707. 30.Zhu, T., et al., The study of perpendicular magnetic anisotropy in CoFeB sandwiched by MgO and tantalum layers using polarized neutron reflectometry. Applied Physics Letters, 2012. 100(20): p. 202406. 31.Hayakawa, J., et al., Current-Induced Magnetization Switching in MgO Barrier Magnetic Tunnel Junctions With CoFeB-Based Synthetic Ferrimagnetic Free Layers. IEEE TRANSACTIONS ON MAGNETICS, 2008. 44(7): p. 1962-1967. 32.Malinowski, G., et al., Magnetization dynamics and Gilbert damping in ultrathin Co[sub 48]Fe[sub 32]B[sub 20] films with out-of-plane anisotropy. Applied Physics Letters, 2009. 94(10): p. 102501. 33.Zhang, Y., et al., Study and tailoring spin dynamic properties of CoFeB during rapid thermal annealing. Applied Physics Letters, 2011. 98(4): p. 042506. 34.Bilzer, C., et al., Study of the dynamic magnetic properties of soft CoFeB films. Journal of Applied Physics, 2006. 100(5): p. 053903. 35.Manuilov, S.A., A.M. Grishin, and M. Munakata, Ferromagnetic resonance, magnetic susceptibility, and transformation of domain structure in CoFeB film with growth induced anisotropy. Journal of Applied Physics, 2011. 109(8): p. 083926. 36.Oogane, M., et al., Magnetic Damping in Ferromagnetic Thin Films. Japanese Journal of Applied Physics, 2006. 45(5A): p. 3889-3891. 37.Cullity, B.D., Introduction to magnetic materials1972, U.S.: Addison Wesley publishing. 38.M. Farle, B.M.-S., A. N. Anisimov, W. Platow, and K. Baberschke, Higher-order magnetic anisotropies and the nature of the spin-reorientation transition in face-centered-tetragonal Ni(001)/Cu(001). Physical Review B, 1997. 55(6): p. 3708. 39.Shigemi MIZUKAMI, Y.A.a.T.M., The Study on Ferromagnetic Resonance Linewidth for NM/80NiFe/NM (NM = Cu, Ta, Pd and Pt) Films. Jpn. J. Appl. Phys., 2001. 40(2A): p. 580. 40.Shankar, R., Principles of quantum mechanics1994, New York ad London: Plenum press. 41.McMichael, R.D., Ferromagnetic resonance linewidth models for perpendicular media. Journal of Applied Physics, 2004. 95(11): p. 7001. 42.Popova, E., et al., Ferromagnetic resonance in the epitaxial system Fe∕MgO∕Fe with coupled magnetic layers. Physical Review B, 2006. 74(22). 43.J Pelzl, R.M., D Spoddig,F Schreiber,J Pflaum and ZFrait2, Spin-orbit-coupling effects on g-value and damping factor of the ferromagnetic resonance in Co and Fe film. J. Phys.: Condens. Matter, 2003. 15: p. S451. 44.Farle, M., Ferromagnetic resonance of ultrathin metallic layers. Reports on Progress in Physics, 1998. 61: p. 755. 45.M Sparks, R.l.a.C.K., Ferromagnetic relaxation. I. Theory of the Relaxation of Uniform Precession and the Defenerate Spectrum in Insulator at Low temperature. Physical Review, 1961. 122(3): p. 791. 46.C. Chappert, K.L.D., P. Beauvilain, H Hurdequint and D Renard, Ferromagnetic resonance studies of very thin cobalt film on a gold substrate. physical Review B, 1986. 34(5): p. 3192. 47.Mills, R.A.a.D.L., Extrinsic contributions to the ferromagnetic resonance response of ultrathinfilms. physical Review B, 1999. 60(10): p. 7395. 48.Woltersdorf, G. and B. Heinrich, Two-magnon scattering in a self-assembled nanoscale network of misfit dislocations. Physical Review B, 2004. 69(18). 49.Lenz, K., et al., Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets. Physical Review B, 2006. 73(14). 50.Hoeppe, U. and H. Benner, Microstructure-related relaxation and spin-wave linewidth in polycrystalline ferromagnets. Physical Review B, 2005. 71(14). 51.Kalarickal, S., et al., Ferromagnetic resonance linewidth mechanisms in polycrystalline ferrites: Role of grain-to-grain and grain-boundary two-magnon scattering processes. Physical Review B, 2009. 79(9). 52.Lindner, J., et al., Two-magnon damping in thin films in case of canted magnetization: Theory versus experiment. Physical Review B, 2009. 80(22). 53.W. Platow, A.N.A., G. L. Dunifer, M. Farle, and K. Baberschke, Correlations between ferromagnetic-resonance linewidths and sample quality in the study of metallic ultrathin film. physical Review B, 1998. 58(9): p. 5611. 54.Suhl, H., Theory of the magnetic damping constant. IEEE TRANSACTIONS ON MAGNETICS, 1998. 34(4): p. 1834-1838. 55.McMichael, R., D. Twisselmann, and A. Kunz, Localized Ferromagnetic Resonance in Inhomogeneous Thin Films. Physical Review Letters, 2003. 90(22). 56.Baberschke, J.L.a.K., In situ ferromagnetic resonance: an ultimate tool to investigate the coupling in ultrathin magnetic films. JOURNAL OF PHYSICS: CONDENSED MATTER, 2003. 15(4): p. R193. 57.Parkin, S., Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Physical Review Letters, 1991. 67(25): p. 3598-3601. 58.Bruno, P. and C. Chappert, Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Physical Review Letters, 1991. 67(12): p. 1602-1605. 59.Z. Zhang, L.Z., P.E. Wigen and K. Ounadjela, Angular dependent of ferromagnetic resonance in exchange-coupled Co/Ru/Co trilayer structure. Physical Review B, 1994. 50(9): p. 6094. 60.Baberschke, J.a.K., Ferromagnetic resonance in coupled ultrathin film. JOURNAL OF PHYSICS: CONDENSED MATTER, 2003. 15: p. S465. 61.Kelly, P.J. and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172. 62.Manual of Veeco innova SPM. 63.Kowalewski, M., C. Schneider, and B. Heinrich, Thickness and temperature dependence of magnetic anisotropies in ultrathin fcc Co(001) structures. Physical Review B, 1993. 47(14): p. 8748-8753. 64.Beaujour, J.M.L., et al., Ferromagnetic resonance study of polycrystalline cobalt ultrathin films. Journal of Applied Physics, 2006. 99(8): p. 08N503. 65.Kanak, J., et al., X-ray diffraction analysis and Monte Carlo simulations of CoFeB-MgO based magnetic tunnel junctions. Journal of Applied Physics, 2013. 113(2): p. 023915. 66.Lavrijsen, R., et al., Magnetism in Co[sub 80-x]Fe[sub x]B[sub 20]: Effect of crystallization. Journal of Applied Physics, 2011. 109(9): p. 093905. 67.Lopusnik, R., et al., Different dynamic and static magnetic anisotropy in thin Permalloy™ films. Applied Physics Letters, 2003. 83(1): p. 96. 68.Li, M., G.C. Wang, and H.G. Min, Effect of surface roughness on magnetic properties of Co films on plasma-etched Si(100) substrates. Journal of Applied Physics, 1998. 83(10): p. 5313. 69.Cheng, T.-I., C.-W. Cheng, and G. Chern, Perpendicular magnetic anisotropy induced by a cap layer in ultrathin MgO/CoFeB/Nb. Journal of Applied Physics, 2012. 112(3): p. 033910. 70.Pelzl, J., et al., Spin orbit-coupling effects on g-value and damping factor of the ferromagnetic resonance in Co and Fe films. Journal of Physics: Condensed Matter, 2003. 15(5): p. S451-S463. 71.Hindmarch, A., et al., Origin of in-plane uniaxial magnetic anisotropy in CoFeB amorphous ferromagnetic thin films. Physical Review B, 2011. 83(21). 72.Swartzendruber, L.J. and E. Paul, The Fe−Ta (Iron-Tantalum) system. Bulletin of Alloy Phase Diagrams, 1986. 7(3): p. 254-259. 73.Swartzendruber, L.J. and B. Sundman, The Fe−Ru (Iron-Ruthenium) system. Bulletin of Alloy Phase Diagrams, 1983. 4(2): p. 155-160. 74.Watanabe, D., et al., Interlayer exchange coupling in perpendicularly magnetized synthetic ferrimagnet structure using CoCrPt and CoFeB. Journal of Physics: Conference Series, 2010. 200(7): p. 072104.
|