( 您好!臺灣時間:2022/07/01 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Ching-Tang Chi
論文名稱(外文):Design and Development of Three-degree-of-freedom Piezo Scanner for Scanning Probe Microscope
外文關鍵詞:Three-degree-of-freedom scanningLinear actuatorPiezo stackModular actuation unitInertial actuation principleContinuous actuation
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米科技的不斷發展需要高精密的三維量測方法來解析各種樣本的奈米結構。三維度壓電掃描探針顯微鏡主要整合了三維度致動器和特殊探針型式。本論文的目的在於運用積層壓電塊設計開發一個能長行程與精密定位掃描的三維度致動器。慣性致動原理被採用於實現長行程致動,而連續致動則被用於精密定位和掃描程序。三維度致動器由三個致動模組單元構成,每個致動模組單元都有相同的架構,包含一個積層壓電塊、 一個致動桿和V型導引。為了使致動桿和V型導引之間達到穩定的摩擦力,使用了彈簧和撓性結構,並透過調整螺絲進行調
X、Y與Z軸皆有最大行程10 mm,致動解析分別可達 400 nm、50 nm和3.6 nm。而慣性致動原理能達成最大平均步進量則為900 nm、380 nm與360 nm。三維度致動器的共振頻率分別為916 Hz、823 Hz和910 Hz,而其Q值則為28.63、51.43和94.87。X和Y軸致動單元有較高阻尼效應可以抑制高速掃描運轉下的掃描超越振動和殘振。三維致動單元之間的交錯干擾則在1.27%與0.19%之間變

The progressive nano-scientific development requires highly accurate Three-degree-of-freedom metrology (3D-metrology) methods for resolving diverse nano-scale sample structures. A 3D-scanning microscope is mainly integrated with a 3D-scanner and special types of probe. The aim of this thesis is to design and develop a 3D-scanner for fulfilling long-stroke, precision positioning and scanning functions by using the piezo stacks. The inertial actuation principle is chosen for realizing the long-stroke actuation, and the continuous actuation is applied for the precision positioning and scanning processes. The 3D-scanner is built up by three modular actuation units. Each modular actuation unit has the same configuration, which consists of a piezo stack, an actuation rod and V-shaped guide. For achieving constant and stable frictional force between the actuation rod and the V-shaped guide, the spring and the flexure structure are applied and regulated by the adjusting screws. For design optimization , the modular actuation scanner is theoretically analyzed to study the relationship between influential parameters and actuation performance. The main influential parameters are the static guiding friction , driving voltage, driving frequency, and load. Moreover, the actuation performances of the modular actuation unit and the complete 3D-scanner are also verified by different testings.
The maximum strokes on the X, Y, and Z-axis are 10 mm, 10 mm, and 10 mm, respectively, and their corresponding actuation resolutions are 400 nm, 50 nm, and 3.6 nm. The maximum average steps achieved by the inertial actuation principle are 900 nm, 380 nm, and 360 μm. The 3D-scanner possesses the resonant frequencies of about 916 Hz, 823 Hz, and 910 Hz, and Q factor are 28.63, 51.43, and 94.87, respectively. The X and Y-axis actuation units have large damping effect that can depress overshoot and residual vibration during the high-speed scanning operation. The cross-talk interferences between the 3-axis actuations vary between 1.27% and 0.19%.

口試委員會審定 I
誌謝 II
中文摘要 III
英文摘要 IV
目錄 VI
表目錄 VIII
圖目錄 IX
符號表 XII
第一章 緒論
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 掃描探針顯微術 2
1.2.2 壓電致動器 4
1.2.3三維度位移平台架構 7
1.2.4 掃描探針 8
1.3 研究目標 10
1.4 內容簡介 10
第二章 三維度壓電掃描探針顯微鏡設計
2.1 系統架構 12
2.2 掃描探針顯微鏡模組 14
2.2.1 掃描穿隧顯微鏡模組 14
2.2.2 原子力顯微鏡模組 15
2.3 三維度壓電致動平台 16
2.4 探針製作與設計 23
第三章 三維壓電掃台之分析和性能測試
3.1 掃描探針顯微鏡模組性能驗證 25
3.2 致動器性能測試 26
3.2.1壓電元件性能測試 26
3.2.2單軸致動之性能實驗測試與分析 28最大靜摩擦力對致動位移之影響 29 驅動電壓、頻率與負載對致動位移之影響 31
3.2.3三維致動器之性能實驗測試與分析 36最大靜摩擦力對致動位移之影響 37驅動電壓與頻率對致動位移之影響 38交錯干擾對致動位移之影響 47
第四章 結論與未來展望 50
參考文獻 52

Binning, G., Rohrer, H., Gerber, Ch., and Weibel, E., “Surface Studies by Scanning Tunneling Microscopy”, Rev. Sci. inst., Vol. 49, No 1, 1982, pp.57
Binning, G., Quate, C.F., and Gerber, Ch., “Atomic Force Microscope”, Phys. Rev. Letters, Vol. 56, No 9, pp.930
Dai, G., H"a" ̈sler-Grohne, W., Hu ̈ser, D., Wolff, H., Danzebrink, H.U., Koenders, L., and Bosse, H., “Development of a 3D-AFM for true 3D measurements of nanostructures”, Meas. Sci. Technol. Vol. 22, 094009, 2011
Binning, G. and Smith, D.P.E., “Single-tube three-dimensional scanner for scanning tunneling microscopy”, Rev. Sci. inst., Vol. 57, 1986, pp.1688-1689
Yamagata,Y., Higuchi, T., Saeki, H., Ishimaru, H., and Hartmann, U., “Ultrahigh vacuum precise positioning device utilizing rapid deformations of piezoelectric elements” J. Vac. Sci. Technol. A, Vol. 8, No.6, Nov/Dec 1990, pp.4089-4100
Mariotto, G., D’Angelo, M., Kresnin, J., and Shvets, I. V., “Study of the dynamic behaviour of a piezo-walker”, Applied Surface Science 144–145, 1999, pp.530–533.
Hwu, E. T., Huang, K. Y., and Hwang, I. S., “SMM Actuator for Nano-Scale Positioning”, Optomechatronic Sensors, Actuators, and Control. Edited by Moon Kee S. Proceedings of the SPIE, Volume 5602, 2004, pp.218-225.
陳劭侖,“雙軸奈米級定位系統之設計開發與性能測試”,國立台灣大學工學 院機械工程學系碩士論文,2010。
Jywe, W.Y., Jeng, Y.R., Liu, C.H., Wu, C.H., Wang, H.S., and Chen, Y.J., “A novel 5DOF thin coplanar nanometer-scale stage”, Precis Eng, Vol. 32, 2008. pp.239–250
Physik Instrumente (PI)公司網頁。
Chen, Y.M., Chao, L.P., and Jung, J.L., “Two-Dimensional Micro/Nano-Positioning-Stage with a Narrow-Span Leaf-Spring Type Guiding Mechanism”, Journal of Advanced Engineering, Vol. 2, No. 2, 2007, pp.67-72.
Bryant, P.J., Kim, H.S., Zheng, Y.C., and Yang, R., “Technique for shaping scanning tunneling microscope tips”, Rev. Sci. Inst. Vol. 58, 1987, pp.1115
Khan, Y., Al-Falih, H., Zhang, Y., Ng, T.K., and Ooi, B.S., “Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips”, Rev. Sci. Inst. Vol. 83, 063708, 2012
Chang, W.T., Hwang, I.S., Chang, M.T., Lin, C.Y., Hsu, W.H., and Hou, J.L., “Method of electrochemical etching of tungsten tips with controllable profiles”, Rev. Sci. Inst. Vol. 83, 083704, 2012

第一頁 上一頁 下一頁 最後一頁 top