(3.235.245.219) 您好!臺灣時間:2021/05/10 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高雅蓓
研究生(外文):Ya-Pei Kao
論文名稱:三軸長行程高速奈米級定位平台之設計開發
論文名稱(外文):Design and Development of a 3-Axis Long Travel and High-speed Nano-scale Positioning System
指導教授:黃光裕
指導教授(外文):Kuang-Yuh Huang
口試委員:林沛群廖洺漢
口試委員(外文):Pei-Chun LinMing-Han Liao
口試日期:2013-06-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:47
中文關鍵詞:掃描探針顯微數定位系統高速長行程壓電積層元件連續試驅動原理撓性放大結構全像式光學讀取頭
外文關鍵詞:Scanning probe microscopyPositioning systemHigh-speedLong travelPiezoelectric stackContinuous driving principleAmplifying flexure structureHOE-pick up head
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
掃描探針顯微術已經被運用在許多科學領域,隨著科技發展需求,高速和長行程掃描已是其發展趨勢,以探討更大範圍的樣本表面變動。本論文的研發目的是設計開發三軸定位系統,使掃描探針顯微術的掃描行程和速度性能增加。三軸奈米級定位系統使用壓電元件作為致動源,以連續驅動方式並藉由控制電壓可獲得奈米等級的位移解析度;再透過撓性位移放大機構來擴大位移行程。為了確保致動器和位移平台之接觸關係與精密線性致動,採用了彈簧導引裝置與可調式預壓機制的配合。位移感測器則採用全像式光學讀取頭,體積尺寸比傳統像散式讀取頭更小,使感測器可以緊緻整合於定位系統中。透過理論分析和有限元素分析模擬,詳細探討設計參數、致動放大機構以及彈簧導引動靜態性能關係,使定位系統得以最佳化。定位系統的控制程式和人機介面建構在LabVIEW軟體平台上,運用電腦可以完成操作參數的設定以及數據展現。
本論文設計之三軸定位系統尺寸為長55mm乘寬55mm乘高50mm,總重量為0.17 kg。X、Y與Z方向最大行程量可達63.2μm、57.8μm、9.7μm,而致動解析度分別為6.2nm、5.6nm、1.0nm,各軸全域非線性度分別為7.4%、6.4%、7.9%,各軸對應的共振頻率為1.12kHz、1.06kHz、3.06kHz。所開發之定位平台系統總體性能,如XY行程量、共振頻率及重量,皆超越市售產品之性能。

The scanning probe microscopy has been successfully used in many technological areas. For fulfilling diverse technological requirements, the high-speed and long-travel scanning function becomes an important development trend to investigate the sample surface variation in a large detecting range. The purpose of this thesis is to develop a three-axis positioning system for enhancing the high-speed and long-travel scanning function of the scanning probe microscopy (SPM). The piezoelectric stack is chosen as the actuator for achieving nano-scale actuation resolution, and the amplifying flexure structure is developed to increase its actuation stroke. Moreover, the parallel spring guide and the preload adjustment device are adopted to induce the stable contact between the actuator and the guiding stage. Because of its small size and high detection resolution, the HOE-pick up head is chosen as the position detection sensor in order to compactly integrated into the positioning system. Through theoretical and finite element analyses, the relationship between the design parameters, the static and dynamic performances of the actuation amplification and the spring guide are studied in detail to optimize the positioning system. The control algorithm and the man-machine interface of this positioning system are built up on the LabVIEW software platform, and the regulation of operation parameters and the data presentation can be carried out by using the computer.
The developed positioning system has a weight of 0.17 kg with the size of length 55 mm x width 55 mm x height 50 mm. It can achieve the maximum stroke of 63.2 μm on the X axis, 57.8 μm on the Y axis, and 9.7 μm on the Z axis. The positioning system had nonlinearity of 7.4%, 6.4%, and 7.9% and the positioning resolution of 6.2 nm, 5.6 nm, and 1.0 nm on the X, Y and Z axes, respectively. Moreover, their corresponding resonance frequency of the positioning system is approximately 1.12 kHz, 1.06 kHz, and 3.06 kHz. The overall performance, such as the actuation strokes on the X and Y axes, the resonances frequency and the weight, of this positioning system is superior to current available products.

口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
符號表 xi
1 第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 1
1.2.1 致動子系統 1
1.2.2 量測子系統 3
1.3 研究目標 5
1.4 內容簡介 6
2 第二章 長行程高速奈米定位平台之架構與概念設計 7
2.1 三軸平台結構 7
2.1.1 三軸平台結構配置 7
2.1.2 導引機構 9
2.2 平台致動器 10
2.2.1 壓電致動器 11
2.2.2 撓性位移放大機構 15
2.3 位移感測器 17
2.3.1 像散式讀取頭聚焦位移量測原理與介紹 17
2.3.2 全像式光學讀取頭 18
3 第三章 三軸定位平台總體設計分析與開發 21
3.1 三軸位移平台結構配置設計 21
3.2 撓性位移放大器之設計與分析 23
3.3 撓性彈簧導引機制分析 27
3.4 回饋控制電路架構 30
4 第四章 三軸長行程高速定位平台之性能測試 32
4.1 全像式光學讀取頭之校正與檢測 32
4.2 XY單軸模組性能測試 34
4.3 三軸定位平台系統性能測試 37
5 第五章 結論與未來展望 41
參考文獻 42
附錄 45

[1]Scire, F.E. and Teague, E.C., “Piezodriven 50-μm Range Stage with Subnanometer Resolution”, Review of Scientific Instruments, Vol. 49, No. 12, 1978, pp.11735-1740.
[2]Xu, W. and King, T., “Flexure Hinges for Piezoactuator Displacement Amplifiers: Flexibility, Accuracy and Stress Considerations”, Precision Engineering, Vol. 19, No. 1, 1996, pp.4-10.
[3]Ouyang, P.R., Zhang, W.J., and Gupta, M.M., “Design of a New Compliant Mechanical Amplifier”, ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Sep. 24-28, 2005.
[4]Ura, S., Suhara, T., Nishihara, H., and Koyama, J., “An Integrated-Optic Disk Pickup Device”, Journal of Lightwave Technology, Vol. 4, NO. 7, 1986, pp.913-918.
[5]Rowsell, T. D., “Remote Measurement of Small Displacements Using a CD Pickup Head”, Medical Engineering and Physics, Vol. 17, No. 6, 1995, pp.459-461.
[6]Quercioli, F., Tiribilli, B., Ascoli, C., Baschieri, P., and Frediani, C., “Monitoring of an Atomic Force Microscope Cantilever with a Compact Disk Pickup”, Review of Scientific Instruments, Vol. 70, No. 9, 1999, pp.3620-3624.
[7]Masstylo, R., Dontsov, D., Manske, E., and Gerd Jager, “A Focus Sensor for an Application in a Nanopositioning and Nanomeasuring Machine”, Proceeding of the SPIE, Vol. 5856, Aug. 03, 2005, pp.238-244.
[8]Hwu, E. T., Huang, K. Y., Hung, S. K., and Hwang, I. S., “Measurement of Cantilever Displacement Using a Compact Disk/Digital Versatile Disk Pickup Head”, Japanese Journal of Applied Physics, Vol. 45, No. 3B, 2006, pp.2368-2371.
[9]劉信廷,”三軸閉迴路奈米定位致動系統之設計開發與特性研究”,國立台灣大學工學院機械工程學系碩士論文,2008。
[10]Physik Instrumente (PI)公司網頁。
http://www.physikinstrumente.com/en/products/primages.php?sortnr=400800.20&picview=2#gallery
[11]Chen, Y.M., Chao, L.P., and Jung, J.L., “Two-Dimensional Micro/Nano-Positioning-Stage with a Narrow-Span Leaf-Spring Type Guiding Mechanism”, Journal of Advanced Engineering, Vol. 2, No. 2, 2007, pp.67-72.
[12]Leang, K.K. and Fleming, A.J., “High-Speed Serial-Kinematic SPM Scanner: Design and Drive Considerations”, Asian Journal of Control, Vol. 11, No. 2, 2009, pp.144-153.
[13]Tenzer, P.E. and Mrad, R.B., “A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners”, IEEE/ASME Transactions On Mechatronics, Vol. 9, No. 2, 2004, pp.427-435.
[14]Chen, C.M., Hsu, Y.C., and Fung, R.F., “System Identification of a Scott-Russell Amplifying Mechanism with Offset Driven by a Piezoelectric Actuator”, Applied Mathematical Modelling, Vol. 36, No. 6, 2012, pp.2788-2802.
[15]廖述鐘,”運用橋型放大機構設計單軸微/奈米定位平台”,台灣科技大學機械工程系碩士論文,2008。
[16]Tian, G.Y., Zhao, Z.X., and Baines, R.W., “The Research of Inhomogeneity in Eddy Current Sensors”, Sensors and Actuators A-Physical, Vol. 69, No. 2, 1998, pp.148-151.
[17]Fan, K.C., Chu, C.L., Liao, J.L., and Mou, J.I., “Development of a High-Precision Straightness Measuring System with DVD Pick-up Head”, Measurement Science and Technology, Vol. 14, No. 1, 2003, pp.47-54.
[18]王偉珉,”像散式讀取頭角度量測性能之精密檢測系統之研發”, 國立台灣大學工學院機械工程學系碩士論文,2010。
[19]陳劭侖,” 雙軸奈米級定位系統之設計開發與性能測試”,國立台灣大學工學院機械工程學系碩士論文,2008。
[20]Yoshida, S., Minami, K., Okada, K., Yamamoto, H., Ueyama, T., Sakai, K., and Kurata, Y., “Optical Pickup Employing a Hologram-Laser-Photodiode Unit”, Japanese Journal of Applied Physics, Vol. 39, No. 2B, 2000, pp.877-882.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔