(3.236.118.225) 您好!臺灣時間:2021/05/16 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳穎
研究生(外文):Chia-Ying Lin
論文名稱:基於運動退化建立之不可分割齒輪運動鏈之運動家族研究
論文名稱(外文):Kinematic Families of Non-Fractionated Geared Kinematic Chains due to Kinematic Degeneration
指導教授:陳達仁陳達仁引用關係
指導教授(外文):Dar-Zen Chen
口試委員:吳隆庸謝文賓
口試委員(外文):Long-Iong, WuWin-Bin Shieh
口試日期:2013-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:38
中文關鍵詞:齒輪運動鏈運動單元退化運動行為
外文關鍵詞:Geared kinematic chainKinematic unit(s)DegenerationKinematic behavior(s)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
結構上不可分割而運動上可分割的齒輪運動鏈的圖集中,各個齒輪運動鏈經過共軸桿件之相對運動固定的運動退化機制後,轉變為其他運動鏈的圖形,即出現其他運動鏈的運動行為,該運動退化機制使不同圖形的的齒輪運動鏈產生關聯;將這些圖集中不同自由度桿件數的齒輪運動鏈經確認並以運動退化串接後,構成了複雜密集的運動退化網路。
本文說明運動退化的作用原理,根據圖形經運動單元分割後的共軸桿件位置,將共軸桿件分成屬於運動單元內部的共軸桿件,以及屬於運動單元之間的共軸桿件。接著對兩種共軸桿件分別進行運動退化,造成運動單元內部退化以及運動單元之間退化,並伴隨著自由度與桿件數下降。此外,某些無法從現有圖集中退化而得的齒輪運動鏈,可由運動退化的法則而推測出退化前的高自由度齒輪運動鏈。
接著將每一個高自由度以及其退化後的所有低自由度齒輪運動鏈分別集合,其金字塔結構類似無輸入輸出地桿之離合器順序表,內部成員具有運動相關,故視為運動家族。各個運動家族群的低自由度成員之間具有完全相同、完全不同以及部分相同的三種特性。本文呈現出完全相同特性的運動家族群,以及在高自由度成員擁有相同的旋轉圖形卻具有完全不同特性的運動家族群。


A methodology on kinematic degeneration among structurally non-fractionated but kinematic fractionated geared kinematic chains (GKCs) is presented in graph representation using the concept of kinematic fractionation. By degenerating two or more coaxial links as a rigid link in a GKC, a higher-DOF GKC can be degenerated into lower-DOF GKC(s). According to location of coaxial links in the kinematic units (KUs) fractionated from graph representation, coaxial links are classified into intra- and inter-KU coaxial links. The characteristics and rules of intra- and inter-KU degeneration between the numbers of DOF, links as well as joints are revealed according to degeneration of intra- and inter-KU coaxial links, respectively. Due to different kinematic behaviors obtained by degenerating different coaxial links, the higher-DOF GKC and its all lower-DOF GKCs are clustered in one kinematic family. The specific relations of strength on lower-DOF members between kinematic families are expressed. Kinematic families provide compact relations between different DOFs and links of GKCs

Chapter 1. Introduction 1
1.1 Degeneration of coaxial links in fractionated GKCs 2
1.2 Motivation 3

Chapter 2. Intra- and inter-KU Coaxial Links 4
2.1 Topological Characteristics of Kinematic Units 4
2.2 Types of Coaxial links of GKC 5

Chapter 3. Kinematic Degeneration 8
3.1 Intra-KU Degeneration 8
3.2 Inter-KU Degeneration 13

Chapter 4. Higher-DOF and lower-DOF GKCs via kinematic degeneration in atlases 16
4.1 Degeneration coupling 16
4.2 Kinematic relationships of GKCs in atlases 18
4.3 The prediction of the higher-GKC not in atlases 19

Chapter 5. Kinematic Families 21
5.1 The lower-DOF members of isotype in same displacement graphs 22
5.2 The higher-DOF members of allotype in same rotation graph 23

Chapter 6. Conclusion 27
6.1 Conclusions 27
6.2 Future works 27
References: 29
Appendix 32


[1]Freudenstein, F., 1971, “An Application of Boolean Algebra to the Motion of Epicyclic Drives,” ASME Journal of Engineering for Industry, 93, pp. 176-182.
[2]Ravisankar, R., and Mruthyunjaya, T. S., 1985, "Computerized Synthesis of the Structure of Geared Kinematic Chains," Mechanisms and Machine Theory, Vol. 20, No. 5, pp. 367-387.
[3][Tsai, L. W., 1987, “An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 109, pp. 329–336.
[4]Lin, C. C. and Tsai, L. W., 1989, “The Creation of Non-Fractionated Two Degree-of-Freedom Epicyclic Gear Train,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 111, pp. 524-529.
[5]Hsu, C. H., 1992, “An Application of Generalized Kinematic Chains to the Structural Synthesis of Non-fractionated Epicyclic Gear Trains,” Proceedings of the 22nd ASME Mechanisms Conference, Socttsdale, Az, DE-Vol.46, pp. 451-458.
[6]Kim, K. U. and Kwak, B. M., 1990. “Application of Edge Permutation Couple to Structural Synthesis of Epicyclic Gear Trains,” Mechanism and Machine Theory, 25, pp. 563-574.
[7]Hsu, C. H. and Hsu, J. J., 1997. “An Efficient Methodology for the Structural Synthesis of Geared Kinematic Chains,” Mechanism and Machine Theory, 32, pp. 957-973.
[8]Jose, M., 2002. “Enumeration of one-DOF Planetary Gear Train Graphs Based on Functional Constrains,” ASME Journal of Mechanical Design, 124, pp. 723-732.
[9]Tsai, L. W., Maki, E. R., Liu, T., and Kapil, N. G., 1988, “The Categorization of Planetary Gear Trains For Automatic Transmissions According to Kinematic Topology”, in SAE XXII FISITA ’88, Automotive Systems Technology: The Future, P-211, 1, 1.513–1.521, SAE paper No. 885062.
[10]Chatterjee, G. and Tsai, L. W., 1994, “Enumeration of Epicyclic-Type Automatic Transmission Gear Trains”, SAE 1994 Transactions, Journal of Passenger Cars, Sec. 6, 103, 1415–1426.
[11]Hsieh, H. I. and Tsai, L. W., 1996, “A Methodology for Enumeration of Clutching Sequences Associated with Epicyclic-Type Automatic Transmission Mechanisms”, SAE 1996 Transactions, Journal of Passenger Cars, Sec. 6, 105, 928–936.
[12]Tsai, L. W., Schultz, G., and Higuchi, N., 2001, "A Novel Parallel Hybrid Transmission," ASME Journal of Mechanical Design, vol.123, pp. 161-168.
[13]Shieh, W. B., Chen, D. Z. and Tsai, C. F., 2011, “Topological Synthesis of Fractionated Parallel Hybrid Transmission with Two Inputs,” Proceedings of the 2011 IFToMM World Congress, June, 19-25, Guanajuato, Mxico, A9-458.
[14]Tsai, L. W., 2001, “Mechanism Design: Enumeration of Kinematic Structures According to Function”, Boca Raton London, New York Washington, D.C.
[15]Bowen, T. C., and Mohan, S. K., 2003, “Transfer case for hybrid vehicle,” United States Patent No. 6533693.
[16]Liu, C. P. and Chen, D. Z., 2000, “On the Embedded Kinematic Fractionation of Epicyclic Gear Trains,” ASME Journal of Mechanical Design, 122, pp. 479-483.
[17]Liu, C. P. and Chen, D. Z., 2001, “On the Application of Kinematic Units to the Topological Analysis of Geared Mechanism,” ASME Journal of Mechanical Design, 123, pp. 240-246.
[18]Buchsbaum, F. and Freudenstein, F., 1970, “Synthesis of Kinematic Structure of Geared Kinematic Chains and other Mechanisms,” ASME Journal of Mechanical Design, 5, pp. 357-392.
[19]Liu, C. P., Chen, D. Z. and Chang, Y. T., 2004, “Kinematic Analysis of Geared Mechanism Using the Concept of Kinematic Units,” Mechanism and Machine Theory, 39, pp. 1207-1221.
[20]Chen, D. Z., Shieh, W. B. and Yeh, Y. C., 2008, “Kinematic Characteristics and Classification of Geared Mechanisms Using the Concept of Kinematic Fractionation,” ASME Journal of Mechanical Design, 130, 082602-1-082602-7


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top