(3.210.184.142) 您好!臺灣時間:2021/05/16 02:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳力豪
研究生(外文):Li-Hao Chen
論文名稱:合金組成與熱處理條件對低熱膨脹鑄鐵之熱膨脹係數的影響
論文名稱(外文):Effects of Chemical Composition and Heat Treatment on Thermal Expansion Coefficient of Low Thermal Expansion Cast Irons
指導教授:潘永寧
口試委員:許正勳楊榮顯
口試日期:2013-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:99
中文關鍵詞:低熱膨脹鑄鐵熱膨脹係數均質化熱處理鎳偏析固溶碳含量尺寸穩定性形狀變化量
外文關鍵詞:low thermal expansion ductile cast ironα valuehomogenization heat treatmentNi segregationcarbon content dissolved in the matrixdimensional stabilitythe changes in the shape
相關次數:
  • 被引用被引用:1
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之內容包含兩部分,第一部分係探討以各種不同合金元素取代Ni之可行性。在合金設計上,選定(1.5~2.0)%C、(1.5~2.0)%Si及~25%Ni為基本合金,並添加各種不同合金元素以探討其對於α值之影響,所設定之目標熱膨脹係數值為α100 ≦ 8 × 10-6/oC。此部分之實驗結果顯示,在所分析之各合金元素中(Mn, Ti, Zr, Cu, V, Al, Sn, Cr, W),除Zr外,其餘均會造成α值之增加。又,添加Zr雖然不會增加α值,但在顯微組織中會出現大量之富Zr析出相,使得組織呈現不均勻的現象,因此,合金之韌性期會降低。綜上,擬以較低價格之合金元素來取代Ni之構想,並不具實際功效。
第二部分係進一步探討均質化熱處理對於α值的影響,由於合金在鑄造狀態(as-cast)時,一方面,合金元素Ni會有(逆)偏析現象,另一方面,固溶於基地中的C含量係處於非平衡狀態,這些現象均會影響(增高) α值。進行均質化熱處理預期將會有助於Ni之均勻分布,且會改變基地中之C含量,而改變α值。本研究之目的主要係建立最佳之熱處理條件以降低α值,並進一步探究均質化熱處理如何影響α值之機理。均質化溫度及時間均是影響固溶C含量及Ni偏析的重要因素。當均質化熱處理溫度為750oC時,雖然可以得到較低的固溶C含量,但卻無法有效解決Ni偏析問題;而當熱處理溫度提高到1200oC時,雖能夠有效解決Ni偏析問題,但卻會造成固溶C含量的增高。因此,欲降低熱膨脹係數應同步降低Ni之偏析程度以及降低基地中的固溶C量。本研究得知,最佳熱處理條件為T6 (1200oC/4hr/FC/750oC/2hr/WQ),其中1200oC/4hr之均質化熱處理溫度幾可完全消除Ni偏析,而在經過750oC/2hr之恆溫保持可降低基地中固溶C含量,兩者均有利於α值之降低,使得T6之α30~200oC約在1~2×10-6/oC之間。此外,α值與固溶C含量及無因次Ni偏析程度之複合迴歸方程式為:α =3.1132 -2.0167%C-0.3466Ni +5.9870 (%C)2+0.1824(Ni)2, R2=0.68。另外,針對B1爐次在經過不同均質化熱處理後,進行拘束型熱循環試驗,並量測尺寸變化量以及形狀變化量,以評估均質化熱處理對於尺寸穩定性之影響,並與一般球墨鑄鐵及304不銹鋼進行比較。實驗結果顯示,針對B1爐次,其形狀變化量皆低於一般球墨鑄鐵以及304不鏽鋼,且與α值有明確的相關性,當α值愈小時,所造成之變形量愈小,故尺寸穩定性愈佳。


The primary purposes of this research are twofold: (1) to study the feasibility of alloying substitutions for Ni at different additions to achieve low α values, (2) to establish the optimal heat treatment conditions for attaining the lowest possible α values, and further to analyze the mechanisms related to the change in α values with microscopic features.
The experimental results regarding the alloying substitutions of Mn, Ti, Cu, V, Al, Sn Cr, W or Zr for Ni indicate that, except for Zr, all other alloying elements cause an increase in α value, and also fail to achieve the target value of α100oC≦8×10-6/C. Although a partial substitution of 5% Zr for equal amount of Ni did not increase the α value, it did cause the formation of Zr-rich phase in the matrix, which embrittled the material. Therefore, the substitution of a certain portion of Ni in the low thermal expansion cast irons with other alloying elements with an intention to reduce the material cost and at the same time to reduce the α value has been found infeasible.
In the second phase of this research, the alloys with chemical compositions of (1.5-2.0)%C, (1.5-2.0)%Si and 35%Ni had been selected to investigate the effect of homogenization heat treatment on the degree of Ni segregation, carbon content dissolved in the matrix and also the α value. Phenomena of Ni (inverse) segregation and the C concentration departing from the equilibrium, which is normally higher than the equilibrium value, are present in the alloys in the as-cast state. As a result, the α value was adversely affected. When the alloys were homogenized at a relatively low temperature, e.g., 750oC, the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, as the alloys were homogenized at a relatively high temperature, e.g., 1000oC, reverse results were obtained. Consequently, not much improvement (reduction) in α value can be achieved. This can be observed in Heat B1, where the α30-100oC values of 5.87×10-6/ oC, 5.74×10-6/ oC, 4.67×10-6/ oC, 4.69×10-6/ oC, and 5.19×10-6/ oC were registered for T0 (as-cast), T1 (750oC/3hr), T2 (750oC/20hr), T3 (1000oC/3hr), and T4 (1000oC/20hr), respectively. Similar results were also obtained in Heats B2 and B3. In order to lower the α value, a compound homogenization heat treatment procedures was performed, namely, 1200oC-4hr/750oC-2hr, in which a higher homogenization heat treatment temperature (1200oC) can effectively eliminate the degree of Ni segregation on the one hand, while the C concentration in the matrix can be reduced to a low level during the holding stage at 750oC. Both effects favor the reduction in α value. As a result, very low α values of around (1-2)×10-6/oC were obtained. Furthermore, Heat B1 with different chemical compositions and homogenization heat treatment conditions, together with a conventional ductile cast iron and a 304 stainless steel, were selected for constrained thermal cyclic tests (30~200oC) to evaluate the dimensional stability of afore-mentioned the alloys based upon the changes in the shape of the test specimens. This can be observed in Heat B1, where the degree of shape change of the low thermal expansion ductile cast irons are well below those of the conventional ductile cast iron (634.01μm) and the 304 stainless steel (428.93μm). Furthermore, correlation between the amount of shape change after thermal cyclic tests and α30~200oC value shows a similar trend. The degree of shape change follows the following sequence: T0(156.93μm) – T1(63.25μm) – T4(27.94μm) – T2(25.77μm) – T3(15.56μm)–T6(7.41μm) verse the α30~200oC value of A0(5.87x10-6/oC)– A1 (5.74x10-6/oC) – A4(5.19x10-6/oC) – A2(4.67x10-6/oC) – A3(4.69x10-6/oC) – A6(1.72x10-6/oC). Accordingly, the homogenization heat treatment will alter (reduce) the α value and the dimensional stability of the alloys will be affected. The present results indicate that the alloy with the homogenization heat treatment of 1200oC-4hr/750oC-2hr can obtain the lowest α value, and hence, possesses the best dimensional stability.

Keywords: low thermal expansion ductile cast iron, α value, homogenization heat treatment, Ni segregation, carbon content dissolved in the matrix, dimensional stability, the changes in the shape


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES 1
第 1 章 緒論 5
1.1 前言 5
1.2 研究動機與目的 6
第 2 章 文獻探討 7
2.1 低熱膨脹鑄鐵之開發過程及特性探究 7
2.1.1 開發過程 7
2.1.2 低熱膨脹現象之成因探討 7
2.1.3 居禮溫度與磁效伸縮 8
2.1.4 低熱膨脹鑄鐵/鑄鋼的規格及其性質 9
2.2 化學成分對低熱膨脹合金之影響 10
2.2.1 Ni的影響 10
2.2.2 C的影響 11
2.2.3 Si的影響 11
2.2.4 Co的影響 11
2.2.5 Cr的影響 12
2.2.6 Ce等稀土元素的影響 12
2.3 製程參數對球墨鑄鐵顯微組織之影響 13
2.3.1 球化處理 13
2.3.2 接種處理 13
2.3.3 出爐溫度、澆鑄溫度以及澆鑄時間之影響 13
2.4 其他參數影響 14
2.4.1 碳當量的影響 14
2.4.2 凝固溫度曲線 14
2.4.3 Saturation Number 15
2.4.4 基地組織 16
2.4.5 熱處理 16
2.5 熱循環 17
2.5.1 熱循環試驗原理 17
2.5.2 拘束型熱循環試驗 18
第 3 章 研究方法與步驟 29
3.1 實驗設計 29
3.2 合金設計 29
3.3 鑄造程序 30
3.3.1 模型製作與造模材料 30
3.3.2 配料及熔解處理 30
3.3.3 球化、接種處理 30
3.4 均質化熱處理程序 31
3.5 各類分析試片之取樣 31
3.6 顯微組織分析 31
3.7 電子微探分析儀 32
3.8 熱膨脹係數量測 32
3.9 熱循環試驗 33
3.10 形狀量測儀 33
第 4 章 結果與討論 40
4.1 替代Ni之合金元素選擇原則 40
4.2 Fe-Ni基節鎳合金之α值分析 40
4.3 均質化熱處理之分析 41
4.3.1 均質化熱處理對基地中固溶C量的影響 41
4.3.2 均質化熱處理對Ni偏析的影響 42
4.4 熱膨脹係數分析 44
4.4.1 C、Si含量對α值之影響 44
4.4.2 Ni偏析對α值之影響 45
4.5 最佳熱處理條件 46
4.5.1 T5及T6熱處理對金相組織之影響 46
4.5.2 固溶C含量及Ni偏析對熱膨脹係數(α值)之複合影響 47
4.6 形狀變化量探討 47
第 5 章 結論 82
參考文獻 ……………… 84
附件 :節鎳合金熱膨脹係數分析資料 87


[ 1 ] 半田卓雄, “低熱膨脹鑄造材料LEX 15,” 日本鑄造株式會社
[ 2 ] ASM Metals Handbook, 9th ed., Vol. 3, 1989, pp.792-798.
[ 3 ] 生井 亨, “新しい素形材-低熱膨張鋳造材,” 鋳鍛造と熱処理, Jan., 1989, pp. 21-28.
[ 4 ] C. E. Guillaume, “Recherches sur les aciers au nickel. Dilatations aux temperatures elevees; resistance electrique,” C.R. Acad. Sci. (Paris), Vol. 125, 1897, pp. 235-243.
[ 5 ] ASM Metals Handbook, 8th ed., Vol. 8, 1973, pp. 413.
[ 6 ] H. Masumoto, “On the Thermal Expansion of the Alloys of Iron, Nickel and Cobalt, and the Cause of the Small Expansibility of Alloys of the Invar Type,” Science Repts., Tohoku Imp. Univ., Vol.20, 1931, pp. 101.
[ 7 ] F. Keffer, “Handbuch der Physik, ” Springer-Verlag, New York, 1966, Vol.18, pt. 2, pp.1
[ 8 ] 羅俊祥, 潘永寧, “化學組成及熱處理對於低熱膨脹鑄鐵之性能影響研究,” 國立台灣大學機研所碩士論文, 2002.
[ 9 ] 林良清, “低熱膨脹合金鑄鐵之最新發展,” 鑄造月刊, 145期, 民國90年10月, pp. 6-10.
[ 10 ] 旗手 稔, 炭本治喜, 中村幸吉, “Fe-Ni-C系低熱膨張材の平均線膨張係数に及ぼすC, Niの影響,” 日本金屬學會誌, 第54卷, 第9号, 1990, pp. 1036-1040.
[ 11 ] 川島誠一, “オーステナイト鋳鉄の特性と製造技術,” 鋳鍛造と熱処理, Sep., 1989, pp. 21-28.
[ 12 ] 榎本新一, “低熱膨張鋳鉄(ノビナイト)について,” 鋳物, 第61卷, 第9号, 1989, pp. 628-631.
[ 13 ] 旗手 稔, 塩田俊雄, 炭本治喜, 中村幸吉, “低熱膨張鋳鉄の平均線膨張係数に及ぼす黑鉛の影響,” 鋳物, 第66卷, 第11号, 1994, pp. 809-814.
[ 14 ] M. Tsuda, J. of the Iron and Steel of Japan, 80, 12, 1994, p.994.
[ 15 ] 翁林昭, “超低熱膨脹合金鑄鐵之研製及其耐熱震研究,” 大同工學院材料所碩士論文, 1990.
[ 16 ] H. Scott, “Expansion Properties of Low Expansion Fe-Ni-Co Alloys,” Trans. AIME, Inst Metals Div., 1930, pp. 506-537.
[ 17 ] E. N. Pan, S. P. Chen and C. R. Loper, Jr., “Influence of Metallurgical Parameters on Low Thermal Expansion Austenitic Cast Irons,” AFS Trans., Vol. 101, 1993, pp. 293-303.
[ 18 ] D. Venugopalan and S. Sahu, “Thermal Expansion Properties of Cast Invar-type Alloys,” AFS Trans., Vol. 105, 1997, pp. 83-87.
[ 19 ] I. A. Franson and R. D. Schelleng, “Composition Effect on Mechanical Properties of Austenitic Ductile Iron Containing about 20% Nickel,” AFS Trans. Vol. 70, 1962, pp. 1095-1100.
[ 20 ] S. I. Karsay and R. D. Schelleng, “Nickel Alloyed Austenitic Ductile Iron Graphitic Structure,” AFS Trans. Vol. 69, 1961, pp. 725-730.
[ 21 ] Ductile Iron Handbook. Des Plaines, IL: American Foundrymen''s Society, Inc., 1993.
[ 22 ] The Sorelmetal Book of Ductile Iron. Montreal, Canada: Rio Tinto Iron & Titanium, 2004.
[ 23 ] S. I. Karsay and R. D. Schelleng, “Heavy Ductile Iron Castings Composition Effect on Graphite Structure,” AFS Trans., Vol. 69, 1961, pp. 672-679.
[ 24 ] R. R. Kust and C. R. Loper, Jr., “The Production of Heavy Section Ductile Iron,” AFS Trans., Vol. 76, 1968, pp. 540-546.
[ 25 ] M. H. Mulazimoglu, Y. M. Yang and J. F. Wallace, “Solidification Studies of Spiking and Large-small Nodule Formation in Ductile Iron Produced by the In-the-mold Process,” AFS Trans., Vol. 93, 1985, pp. 627-650.
[ 26 ] A. G. Fuller and T. N. Blackman, “Effects of Composition and Foundry Process Variables on Graphite Flotation in Hypereutectic Ductile Iron,” AFS Trans., Vol. 94, 1986, pp. 823-862.
[ 27 ] 康進興, 施景祥, 葉松瑋, 林志隆, “低熱膨脹球墨鑄鐵鑄造技術,” 財團法人金屬工業研究發展中心, 高雄市, 2011。
[ 28 ] G. X. Sun and C. R. Loper Jr., “Graphite Flotation in Cast Iron,” AFS Trans., Vol. 91, 1984, pp. 841-854.
[ 29 ] 陳翔斌, 潘永寧, “冶金參數對低熱膨脹鑄鐵之性質影響研究,” 國立台灣大學機研所碩士論文, 1991.
[ 30 ] R. P. Skelton, “Introduction to Thermal Shock,” High Temp. Technol., vol. 8, 1990, pp. 78-88.
[ 31 ] Y. J. Park, R. B. Gundlach, R. G. Thomas, “Thermal Fatigue Resistance of Gray and Compacted Graphite Irons”, AFS Trans., vol. 93, 1985, pp. 415-422.
[ 32 ] Y. J. Park, R. B. Gundlach and J. F. Janowak, “Effects of Molybdenum on Thermal Fatigue Resistance of Ductile and Compacted Graphite Irons”, AFS Trans., vol. 95, 1987, pp. 267-272.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林素娟:〈古代婚禮「廟見成婦」說問題研究〉,《漢學研究》第21卷第1期(2003年6月)
2. 杜正勝:〈從眉壽到長生—中國古代生命觀念的轉變〉,《中央研究院歷史語言研究所集刊》第66本第二分(1995年6月)
3. 杜正勝:〈"編戶齊民論"的剖析〉,《清華學報》新24卷第2期(1994年6月)
4. 李豐楙:〈先秦變化神話的結構性意義—一個「常與非常」觀點的考察〉,《中國文哲研究集刊》第4期(1994年3月)
5. 余光弘:〈A.vanGennep生命儀禮理論的重新評價〉,《中央研究院民族學研究所集刊》第60期(1985年秋季)
6. 伍振勳:〈荀子的「身、禮一體」觀—從「自然的身體」到「禮義的身體」〉,《中國文哲研究集刊》19期(2001年9月)
7. 王夢鷗:〈《禮記》與鄭玄〉,《中央月刊》第4卷第8期(1972年6月)
8. 王家儉:〈清代禮學的復興與經世禮學思想的流變〉,《漢學研究》第24卷第1期(2006年6月)
9. 林素娟:〈喪禮飲食的象徵、通過意涵及教化功能—以禮書及漢代為論述核心〉,《漢學研究》第27卷第4期(2009年12月)
10. 林素娟:〈飲食禮儀的身心過渡意涵及文化象徵意義—以三《禮》齋戒、祭祖為核心進行探討〉,《中國文哲研究集刊》第32期(2008年3月)
11. 林啟屏:〈古代文獻中的「德」及其分化—以先秦儒學為討論中心〉,《清華學報》新35卷第1期(2005年6月)
12. 邱德修:〈以禮解經初探—以《論語》為例〉,《文與哲》第7期(2005年12月)
13. 張光裕:〈《儀禮》與周代禮制研究的關係舉隅〉,《臺大中文學報》第10期(1998年5月)
14. 張娣明:〈鄭注〈士昏禮〉之研究〉,《中國學術年刊》第22期(2001年5月)
15. 張麗珠:〈淩廷堪「以禮代理」的禮治理想暨乾嘉復禮思潮〉,《國文學誌》第2期(1998年6月)