(3.235.191.87) 您好!臺灣時間:2021/05/13 13:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧冠豪
研究生(外文):Kuan-Hao Lu
論文名稱:自組裝奈米球基板預壓陽極氧化鋁模具製作高規則奈米陣列結構及其應用
論文名稱(外文):Fabrication and Application of Nanostructure Using AAO Mold Pre-Textured by Self-Assembled Nanosphere Template
指導教授:楊申語楊申語引用關係
指導教授(外文):Sen-Yeu Yang
口試委員:劉士榮魏培坤
口試委員(外文):Shih-Jung LiuPei-Kuen Wei
口試日期:2013-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:自組裝PS奈米球預壓陽極氧化鋁抗反射生醫檢測
外文關鍵詞:Self-assembled PS nanospherePre-texturedAnodic aluminum oxideanti-reflectionbio-sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
具奈米結構之表面廣泛應用於顯示器、太陽能板、生物醫學檢測元件中,而目前之製造大多仰賴微機電製程,製程繁複、成本昂貴且無法製作大面積,為現今的一大挑戰之一。本研究結合自組裝PS奈米球與陽極氧化鋁製程,開發一簡易製作出大面積之預壓陽極氧化鋁模具之製程,並利用氣輔熱壓複製結構於PC基材表面,並探討其光學及生醫檢測上的應用。
本研究以直徑大小為500 nm之PS奈米球於轉速600 rpm之旋轉塗佈下,均勻塗佈於矽基材表面,得到大面積之高規則排列的自組裝PS奈米球陣列結構,並且利用PDMS澆鑄翻模及電鑄鎳的兩階段式翻模複製,成功製作出表面具奈米凸起陣列結構之金屬鎳預壓模具。
預壓陽極氧化鋁製程中,以金屬鎳預壓模具預壓,接著進行一次陽極氧化處理,進行擴孔後便可得到規則陽極氧化鋁(AAO)奈米孔洞陣列,本研究以磷酸作為電解液,外加電壓180 V進行陽極氧化處理,獲得預壓陽極氧化鋁模具,接著以氣體輔助熱壓製程,於PC基材表面製作出具奈米柱陣列結構之PC薄膜試片。
在光學的應用上,將以PDMS軟模所壓印之PC薄膜與預壓陽極氧化鋁模具所壓印之PC薄膜作反射率的量測,由結果顯示,反射率皆有顯著的下降,在高度為660 nm之結構下,反射率皆可下降至2 %以下,具良好的抗反射效果。
於生醫檢測方面,本研究製作之試片鍍金後可同時應用於表面電漿共振(SPR)與表面增強拉曼散射(SERS)兩種檢測上。在穿透光譜的量測上,於空氣及水兩種環境中,因表面電漿共振而在環境折射率變化時使其光譜有紅移的現象;而在拉曼光譜的量測中,檢測對-巰基苯甲酸(p-mercaptobenzoic,PMBA)分子,可在短時間內得到拉曼訊號的增強,顯示生醫檢測的潛力。

Nanostructured surfaces are widely used in monitor, solar panel, and bio-sensor etc. However, the surfaces with highly-ordered nanostructures are fabricated using micro electro mechanical systems (MEMS) processes which are complicated and expensive. To fabricate large area nanostructures in a simple and inexpensive way is the major challenge. In this study, highly-ordered nanostructures are to be fabricated using anodic aluminum oxide (AAO) mold pre-textured by self-assembled nanosphere template.
The PS nanospheres with average diameter of 500 nm were spin-coated on Si wafer at the speed of 600 rpm. The large area highly-ordered nanosphere array was then replicated by PDMS (polydimethylsiloxane) casting and Ni electroforming. The electroformed Ni mold was used to pre-texture the Al substrate before AAO treatment for enhancing the order of AAO nanostructures.
The Al sheet was firstly electro-polished, then pre-textured using Ni pre-texturing mold. The electrolyte is phosphoric acid, and the employing anodization voltage is 180 V. The nanopore array was fabricated by one-step anodization and subsequent pore-widening to obtain nanopore array with the pitch of 500 nm and the pore diameter of 250 nm. The AAO sheet with nanopore array was employed to replicate nanostructures on PC film using gas-assisted hot embossing. The nanopillar array on the surface of PC films could be fabricated. Their optical and bio-sensing functions were verified.
The anti-reflective characteristic was verified by measuring the reflection rate. The reflection rate obviously reduced on the nanostructured PC films. With the PC film of nanopillar arrays, the reflection rate reduced to below 5 %.
The PC films with nanopillar array were coated with the thickness of Au 100 nm for bio-sensing. The transmission spectra in air and water were compared, the red shift of the deep due to surface plasmon resonance (SPR) was detected. For SERS detection, p-mercaptobenzoic acid (PMBA) was used as the probe. The Raman spectrum showed that the signal of the probe was enhanced on the Au coated nanostructured surfaces.

致謝 I
摘要 II
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 導論 1
1.1 奈米結構之應用 1
1.2 奈米結構之製作與複製技術 2
1.3 陽極氧化鋁簡介 3
1.4 研究動機與方向 3
1.5 論文架構 4
第二章 文獻回顧 8
2.1 陽極氧化鋁(AAO)相關文獻 8
2.1.1 多孔性陽極氧化鋁之製作與原理 8
2.1.2 陽極氧化鋁之研究發展 9
2.2 奈米壓印技術相關文獻 10
2.3 自組裝奈米球相關文獻 12
2.4 生物感測器相關文獻 13
2.5 文獻回顧總結 14
第三章 實驗設置與實驗方法 25
3.1 實驗目的與整體流程規劃 25
3.2 自組裝PS奈米球陣列結構製作與預壓模具之開發 26
3.2.1 自組裝PS奈米球陣列結構製作 26
3.2.2 PDMS模具與預壓模具之製作 27
3.3 陽極氧化鋁製程與相關設備 27
3.3.1 陽極氧化鋁製程之材料 27
3.3.2 陽極氧化電解槽與低溫循環系統 28
3.3.3 抽風櫥 28
3.3.4 加溫磁石攪拌器 28
3.3.5 直流電源供應器 28
3.3.6 陽極氧化鋁製作流程 29
3.4 氣體輔助熱壓製程與相關設備 30
3.4.1 氣體輔助熱壓設備 30
3.4.2 氣體輔助熱壓製程 31
3.5 相關儀器設備 32
3.5.1 掃描式電子顯微鏡 32
3.5.2 離子鍍金機 32
3.5.3 光譜儀 32
3.5.4 穿透光譜量測系統 33
3.5.5 拉曼光譜量測系統 33
第四章 自組裝奈米球陣列結構之製作與預壓模具開發 44
4.1 自組裝PS奈米球陣列結構之製作 44
4.1.1 矽基材之前處理 44
4.1.2 PS奈米球溶液之塗佈 45
4.2 自組裝PS奈米球陣列結構之結果與參數探討 45
4.3 PS奈米球陣列結構之翻模與預壓模具之製作 47
4.3.1 PDMS澆鑄翻模複製 47
4.3.2 電鑄製程製作預壓模具 48
4.4 利用PDMS軟模進行氣體輔助熱壓製程 48
4.5 本章結論 49
第五章 預壓陽極氧化鋁製程開發與氣輔熱壓複製結構於高分子基材 58
5.1 鋁基材之前處理製程 58
5.1.1 鋁材之熱處理 58
5.1.2 鋁材之電化學拋光 59
5.2 預壓製程開發 59
5.2.1 實驗設置 59
5.2.2 預壓製程實驗測試與參數 60
5.3 預壓陽極氧化鋁製程與參數探討 60
5.3.1 預壓陽極氧化鋁模具製作流程 60
5.3.2 預壓陽極氧化鋁製程參數與結果討論 62
5.4 氣體輔助熱壓複製奈米結構於高分子基材 63
5.4.1 氣體輔助熱壓實驗設置與流程 63
5.4.2 壓印參數與結果探討 64
5.5 本章結論 65
第六章 高分子基材表面奈米陣列結構之應用 81
6.1 抗反射性質量測 81
6.1.1 抗反射性質原理與研究 81
6.1.2 反射率量測 82
6.2 奈米陣列結構應用於生醫檢測 84
6.2.1 研究背景 84
6.2.2 生醫檢測效果 85
6.3 本章結論 87
第七章 結論與未來研究方向 94
7.1 研究成果與結論 94
7.1.1 自組裝PS奈米球陣列結構 94
7.1.2 兩階段式翻模複製製作預壓模具 94
7.1.3 預壓陽極氧化鋁製程開發 94
7.1.4 氣輔熱壓複製奈米結構於PC基材表面 95
7.1.5 奈米陣列結構之應用 95
7.2 未來研究方向 95
參考文獻 97


[1] Zhang, G., Zhang, J., Xie, G., Liu, Z., Shao, H. , “Cicada wings: A stamp from nature for nanoimprint lithography”, Small , 2 (12) , pp. 1440-1443 (2006)
[2] Stavenga, D.G., Foletti, S., Palasantzas, G., Arikawa, K., “Light on the moth-eye corneal nipple array of butterflies”, Proceedings of the Royal Society B: Biological Sciences, 273 (1587) , pp. 661-667 (2006)
[3] Zorba, V., Stratakis, E., Barberoglou, M., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H., Fotakis, C., “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf”, Advanced Materials, 20 (21) , pp. 4049-4054 (2008)
[4] Becker, H., Heim, U., “Hot embossing as a method for the fabrication of polymer high aspect ratio structures”, Sensors and Actuators, A: Physical, 83 (1) , pp. 130-135 (2000)
[5] 張哲豪, ”流體微熱壓製程開發研究”, 臺灣大學機械工程研究所博士論文 (2004)
[6] Masuda, H., Hasegwa, F., Ono, S., “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution”, Journal of the Electrochemical Society, 144 (5) , pp. L127-L130 (1997)
[7] Li, A.P., Muller, F., Bimer, A., Nielsch, K., Gosele, U., “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodhexic alumina”, Journal of Applied Physics, 84 (11) , pp. 6023-6026 (1998)
[8] Fred, K., Hunter, M.S., Robinson, D.L., “Structural Features of Oxide Coatings on Aluminum”, Journal of The Electrochemical Society, 100(9), pp. 411-419 (1953)
[9] Thompson G.E., “Porous anodic alumina: fabrication, characterization and applications”, Thin solid films, 197(1-2), pp. 192-201 (1997)
[10] Jessensky, O., Muller, F., Gosele, U., “Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, Journal of the Electrochemical Society, 145 (11) , pp. 3735-3740 (1998)
[11] Masuda, H., Fukuda, K., “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, 268 (5216) , pp. 1466-1468 (1995)
[12] Masuda, H., Satoh, M., “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask”, Japanese Journal of Applied Physics, Part 2: Letters 35 (1 B) , pp. L126-L129 (1996)
[13] Chik, H., Xu, J.M., “Nanometric superlattices: Non-lithographic fabrication, materials, and prospects”, Materials Science and Engineering R: Reports, 43 (4), pp.103-138 (2004)
[14] Choi, D., Choi, Y., Hong, S., Kang, T., Lee, L.P., “Self-organized hexagonal-nanopore SERS array”, Small, 6 (16) , pp. 1741-1744 (2010)
[15] Liu, L., Shao, M., Cheng, L., Zhuo, S., Que, R., Lee, S.T., “Edge-enhanced Raman scattering effect from Au deposited nanoedge array”, Applied Physics Letters, 98 (7) , art. no. 073114 (2011)
[16] Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., Tamamura, T., “Highly ordered nanochannel-array architecture in anodic alumina”, Applied Physics Letters, 71 (19) , pp. 2770-2772 (1997)
[17] Yasui, K., Nishio, K., Nunokawa, H., Masuda, H., “Ideally ordered anodic porous alumina with Sub- 50 nm hole intervals based on imprinting using metal molds”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 23 (4) , pp. L9 (2005)
[18] Bartolini R., Hannan W., Karlsons D., Lurie M., “Embossed hologram motion pictures for television playback”, Applied Optics, 9 (10) , pp. 2283-2290 (1970)
[19] Becker, E.W., Ehrfeld, W., Hagmann, P., Maner, A., Munchmeyer, D., “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)”, Microelectronic Engineering, 4 (1) , pp. 35-56 (1986)
[20] Chou, S.Y., Krauss, P.R., Renstrom, P.J., “Nanoimprint lithography”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 14 (6) , pp. 4129-4133 (1996)
[21] Chou, S.Y., Keimel, C., Gu, J., “Ultrafast and direct imprint of nanostructures in silicon”, Nature, 417 (6891) , pp. 835-837 (2002)
[22] Ting, C.J., Huang, M.C., Tsai, H.Y., Chou, C.P., Fu, C.C., “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology”, Nanotechnology, 19 (20) , art. no. 205301 (2008)
[23] Chang, J.H., Yang, S.Y., “Gas pressurized hot embossing for transcription of micro-features”, Microsystem Technologies, 10 (1) , pp. 76-80 (2003)
[24] Denkov, N.D., Velev, O.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H., Nagayama, K., “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir, 8 (12) , pp. 3183-3190 (1992)
[25] Kosiorek, A., Kandulski, W., Chudzinski, P., Kempa, K., “Giersig, Shadow nanosphere lithography: Simulation and experiment M.”, Nano Letters, 4 (7) , pp. 1359-1363 (2004)
[26] Hassanin, H., Mohammadkhani, A., Jiang, K., “Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process”, Lab on a Chip - Miniaturisation for Chemistry and Biology, 12 (20) , pp. 4160-4167 (2012)
[27] Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A., “Extraordinary optical transmission through sub-wavelenght hole arrays”, Nature, 391 (6668) , pp. 667-669 (1998)
[28] Fleischmann, M., Hendra, P.J., McQuillan, A.J., “Raman spectra of pyridine adsorbed at a silver electrode”, Chemical Physics Letters, 26 (2) , pp. 163-166 (1974)
[29] Xu, J., Guan, P., Kvasniĉka, P., Gong, H., Homola, J., Yu, Q., “Light transmission and surface-enhanced raman scattering of quasi-3D plasmonic nanostructure arrays with deep and shallow Fabry-Perot nanocavities”, Journal of Physical Chemistry C, 115 (22) , pp. 10996-11002 (2011)
[30] Wu, H.Y., Choi, C.J., Cunningham, B.T., “Plasmonic nanogap-enhanced raman scattering using a resonant nanodome array”, Small, 8 (18) , pp. 2878-2885 (2012)
[31] H. A. MacLeod, A. MacLeod, “Thin-Film Optical Filters” , Third Edition (2001)
[32] 李正中,“薄膜光學與鍍膜技術”第七版 (2012)
[33] Gombert, A., Glaubitt, W., Rose, K., Dreibholz, J., Blasi, B., Heinzel, A., Sporn, D., Doll W., Wittwer, V., “Subwavelength-structured antireflective surfaces on glass”, Thin Solid Films, 351 (1-2) , pp. 73-78 (1999)
[34] Yamada, N., Kim, O.N., Tokimitsu, T., Nakai, Y., Masuda, H., “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells”, Progress in Photovoltaics: Research and Applications, 19 (2) , pp. 134-140 (2011)
[35] Homola, J., Yee, S. S., Gauglitz, G., “Surface plasmon resonance sensors: review”, Sensors and Actuators, B: Chemical, 54 (1) , pp. 3-15 (1999)
[36] Brolo, A.G., Gordon, R., Leathem, B., Kavanagh, K.L., “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films”, Langmuir, 20 (12) , pp. 4813-4815 (2004)
[37] Gersten, J., Nitzan, A., “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces”, The Journal of Chemical Physics, 73 (7) , pp. 3023-3027 (1980)
[38] Geissler, M., Li, K., Cui, B., Clime, L., Veres, T., “Plastic substrates for surface-enhanced raman scattering”, Journal of Physical Chemistry C, 113 (40) , pp. 17296-17300 (2009)
[39] Lee, K.S., El-Sayed, M.A., “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition”, Journal of Physical Chemistry B, 110 (39) , pp. 19220-19225 (2006)
[40] Chang, W.Y., Wu, J.T., Lin, K.H., Yang, S.-Y., Lee, K.-L., Wei, P.-K., “Fabrication of gold sub-wavelength pore array using gas-assisted hot embossing with anodic aluminum oxide (AAO) template”, Microelectronic Engineering, 88 (6) , pp. 909-913 (2011)
[41] Wu, W., Hu, M., Ou, F.S., Li, Z., Williams, R.S., “Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy”, Nanotechnology, 21 (25) , art. no. 255502 (2010)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 宋學文,2001,〈全球化與全球治理對我國公共政策研究之影響:並兼論此影響在兩岸關係研究之意涵〉,《中國大陸研究》。
2. 宋學文,2003b,〈非政府組織(NGOs)在全球治理中之機會與限制:一個政治學的觀點〉,《中國行政評論》。
3. 宋學文,陳鴻基,2002,〈從全球化探討網際網路時代的政策管理〉,《資訊管理學報》。
4. 邱華君,2001,〈公務人員之行政責任〉,《人事行政月刊》。
5. 李惠宗,2003,〈憲法工作權保障系譜之再探一以司法院大法官解釋為中心〉,《憲政時代》。
6. 何展旭、黃錦堂,2011,〈公務人員考績三丙強制退休或資遣處分合憲性之分析〉,《全國律師》。
7. 李震山,2004,〈程序基本權〉,《月旦法學教室》。
8. 李建良,2000d,〈析論司法院大法官釋字第491號解釋〉,《臺灣本土法學雜誌》。
9. 李建良,2000c,〈論立法裁量之憲法基礎理論〉,《憲政時代》。
10. 李昭賢,2011,〈公務人員考績制度變革後考績丙等救濟程序興革之芻議〉,《人事行政》。
11. 李英毅,2000,〈法律明確性原則〉,《法政學報》。
12. 宋學文,2004,〈全球化與全球治理之互動之模型分析:以人文與社會科學之「科際整合」為例〉,《理論與政策》。
13. 吳泰成,2010,〈我國文官績效管理的回顧與前瞻〉,《人事行政季刊》。
14. 吳庚,1990,〈論憲法解釋〉,《法令月刊》。
15. 林明鏘,2010,〈公務人員2010年考績法修正草案與制度基本問題〉,《月旦法學雜誌》。
 
系統版面圖檔 系統版面圖檔