(3.236.214.19) 您好!臺灣時間:2021/05/06 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳和琮
研究生(外文):Ho-Tsung Chen
論文名稱:以光調變TiOPc阻抗來建構二維度光驅動液滴操控平台的研究與開發
論文名稱(外文):Research and development on the construcction of 2D light-driven droplet manipulation platform based on light modulation of TiOPc impedance
指導教授:李世光李世光引用關係
口試委員:吳光鐘黃君偉林致廷張晉愷
口試日期:2013-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:84
中文關鍵詞:電濕潤光流體光鑷子光電濕潤表面梯度
外文關鍵詞:ElectrowettingOptofluidicOptoelectronic tweezersOptoelectrowettingWettability gradient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於人口成長與老齡化問題,家庭醫療檢測監測系統已經廣泛受到重視。過去醫學檢測無不依賴於集中在都會型的中大規模診所,其就醫之限制降低了老年人口的醫療意願;而研究型醫院之檢驗實驗室與設備,隨著人口老年化所增加的醫療人數,使得現有醫療設備增添不及、檢測時程更加冗長,對於急性症狀與持續性長期生理監測造成檢測上的阻礙。過去十年來,數位微流體領域的研究發展進步帶動了實驗室晶片概念的興起,增加了居家檢測的便利性,讓檢測儀器與流程由大型醫院走向居家醫療的一環。然而,實驗室晶片系統發展至今仍然有其限制性,例如:在微小結構中必須使其具備檢體的運輸、傳遞、分離,篩選、純化、檢測等功能,在傳統的數位微流體晶片的結構設計上是極為繁瑣複雜的製程。如何使得微小檢測晶片製程簡化、增加檢測效率與重複使用性,仍然是此領域中大家努力的方向。
在此篇研究論文中,從數位微流體的基礎理論─電濕潤現象延伸,並將光敏材料(Photosensitive material) TiOPc加入傳統EWOD (Electrowetting on Dielectric)結構設計作為光驅動檢測晶片之基底平台架構,使檢測平台之電極結構利用光照可以重複定義,用以改變傳統數位微流體晶片架構裡複雜的微流道結構與與操作電極之製程,並在光敏材料與介電層材料(Positive photoresist S1813) 間做阻抗匹配,選擇不同操作頻率使晶片可轉換在光電濕潤(Optoelectrowetting)與光鑷子(Optoelectronic tweezers) 兩種模式。利用兩種模式的配合應用照光區域使液滴能完成移動、混合,篩選純化;並藉由光敏材料對於光強反應之差異,設計表面濕潤梯度來建構液體自發性傳輸路徑。
最後我們選用膜厚度為3.5μm之TiOPc作光感層、膜厚度為1.2μm之正光阻S1813為介電層,搭配厚度30 nm之AF1601為疏水層,並在高度為1 mm的晶片腔體內灌入十二烷(C12H26)絕緣油,以極化後的純水3μl作為操縱液體。結果可得此體積液體隨著照光驅動之移動速率可達5mm/s ,可移動體積為10μl/s,並量化照度與電濕潤現象關係評估建構居家檢測用途之自主操縱光流體晶片的可行性。


In recent years, home medical detection monitoring system has gained the public’s attention due to population growth and aging. Traditional medical tests were mainly conducted in large-scale clinics located in urban areas. This geographic element reduced the elderly population’s willingness for the medical treatments. Those research hospitals with the test lab and equipment, along with the increase in the aging population become more crowded and obviously insufficient. This tendency worsens the situation and remains an obstacle because of lengthy testing schedule for the acute symptoms and persistent long-term physiological monitoring. In the past decades, the development and progress of digital microfluidics research in this field led to the rise of the concept of lab chip that increases the convenience of home testing and minimize the necessary instruments and equipment. Thus, the conducted testing and examination are gradually shifted from the large hospitals into home health part. However, the development of the laboratory Chip still faces several restrictions, such as the need to have a minute structure specimen transport, transfer, separation, screening, purification, detection. There still leaves room to be improved in this field on how to simplify the manufacturing process to make tiny test chip and how to increase detection efficiency and reusability.
In this study, we fundamentally start from the basic theory of digital microfluidic, the electrowetting phenomena. The base structure of our device is built by inserting the photosensitive material TiOPc into the traditional structure of Electrowetting on Dielectric (EWOD). The photosensitive material comprehensively changes the view of controlling mechanism from presetting the microelectrode to optically tailor the influence of surface electrode. More specifically, the electrode in our platform can be both defined afterward and redefined dynamically due to its photosensitive properties and reversibility. This aspect improves the complex micro-channel structure in digital microfluidic device and manufacturing of operation electrodes. Meanwhile, the impedance matching of photosensitive and dielectric materials is considered in detail. It not only ensures the operation of device but promises to work diversely for two modes, optoelectrowetting and optoelectronic tweezers respectively by adopting specific operating frequency. The successful combination of the two modes can achieve transportation, merging, dilution and purification onto the droplet within the device. Moreover, the various responses to light intensity of different levels for photosensitive material are implemented to profile the surface of wettability gradient and construct the route for autonomous motion of droplet.
Finally, we utilize the 3.5μm thickness of TiOPc as photosensitive layer, 1.2μm thickness of positive photoresist S1813 as dielectric layer, 30 nm thickness of Teflon as hydrophobic layer to complete the base structure. Our device is completely packaged by covering an upside ITO glass and injection of Dodecane (C12H26) as isolation oil. The experimental results show that the transportation speed of 3μl deionized water is up to 5 mm/s and the volume flow rate of the liquid is up to 10μl/s in our device. The identification of the relationship of light intensity and electrowetting phenomena gives an outlook to estimate the feasibility for construction of the optofluidic chip with potential autonomous manipulation of samples for home medical detection.


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Motivation 7
1.3 Outline of thesis 8
Chapter 2 Basic theory and experimental method 10
2.1 Surface tension and wetting 10
2.1.1 Surface tension 10
2.1.2 Young’s Equation 11
2.2 Electrowetting 12
2.2.1 Lippmann’s Equation 12
2.2.2 Young-Lippmann’s Equation 13
2.2.3 Electrical double layer to electrowetting on dielectric 14
2.2.4 Saturation of the electrowetting effect 16
2.3 Surface of wettability gradient 17
2.4 Dielectrophoresis 19
2.5 Operating Mechanism 21
2.6 Analysis of light-induced mechanics 25
Chapter 3 Structure and materials 28
3.1 Concept of the device material structure 28
3.2 Photosensitive Material 29
3.3 Dielectric layer 30
3.4 Hydrophobic layer 32
3.5 Fluid in chip 33
3.5.1 Insulation oil 33
3.5.2 Deionized water 34
3.6 Contact angle measurement 34
3.7 Observation of droplet behavior 38
3.8 Experimental instruments 39
Chapter 4 Analysis of materials 43
4.1 Electrical properties of TiOPc thin film 43
4.1.1 Comparing varied concentration 44
4.1.2 Comparing varied thickness of thin film 46
4.2 Response time of TiOPc thin film 48
4.3 Electrical properties of dielectric layer S1813 49
4.3.1 Comparing varied thickness of S1813 thin film 50
4.3.2 Relation between applied voltage and contact angle 50
4.4 Electrical properties of Teflon 52
4.4.1 Comparing varied thickness of Teflon thin film 52
4.4.2 Correlation between contact angle and hydrophobic layer thickness 53
4.5 Structure of the light-driven droplet movement device 55
4.6 Construct the surface with wettability gradient 60
4.6.1 Identify the relation between light intensity and distance 60
4.6.2 Decreasing ratio of photosensitive layer verse light intensity 61
4.6.3 Voltage drop ratio across the dielectric layer verse light intensity 61
4.7 Heat affect identification 63
Chapter 5 Analysis of chip fabrication 64
5.1 Chip fabrication 64
5.1.1 Substrates selecting and cleaning 64
5.1.2 Photosensitive layer fabrication 65
5.1.3 Dielectric layer fabrication 65
5.1.4 Hydrophobic layer fabrication 66
5.1.5 Spacing 66
5.1.6 Packaging 67
5.2 Optical-driven droplet chip fabrication 68
Chapter 6 Result and Discussion 69
6.1 Light-induced droplet movement 69
6.1.1 Observe of water droplet movement and velocity. 69
6.1.2 Observe of water droplet merging behavior 71
Chapter 7 Conclusion and Future Work 74
7.1 Conclusion 74
7.2 Future work 75
REFERENCE 77
Appendix A Measurement of droplet contact angle 81
A-1 Fig. 4.5 6 Contact angle verse applied voltage 81
A-1-1 Contact angle verse applied voltage on S1813 (Teflon 20nm/S1813 2.8μm /DI water) 81
A-1-2 Contact angle verse applied voltage on S1813 (Teflon 20nm/S1813 2.1μm /DI water) 81
A-1-3 Contact angle verse applied voltage on S1813 (Teflon 20nm/S1813 1.8μm /DI water) 82
A-1-4 Contact angle verse applied voltage on S1813 (Teflon 20nm/S1813 1.4μm /DI water) 82
A-2 Fig. 4.5 6 Light-induced contact angle change 83
A-2-1Contact angle verse applied voltage without illumination (Teflon 20nm/S1813 1.4μm /TiOPc 3.5μm/DI water) 83
A-2-2 Contact angle verse applied voltage with illumination (Teflon 20nm/S1813 1.4μm /TiOPc 3.5μm/DI water) 84


[1]P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nature Reviews Drug Discovery, Vol. 5, pp. 210–218, 2006.
[2]J. Gong and C. J. Kim, “All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics,” Lab on a Chip, vol. 8, no. 6, pp. 898–906, 2008.
[3]A. R. Wheeler, “Chemistry: putting electrowetting to work,” Science, vol. 322, no. 5901, pp. 539–540, 2008.
[4]K. Ahn, C. Kerbage, T. P. Hunt, R. M. Westervelt, D. R. Link, and D. A. Weitz, “Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices,” Applied Physics Letters, vol. 88, no. 2, Article ID 024104, pp. 1–3, 2006.
[5]J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev,“Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Materials, vol. 4, no. 1, pp. 98–102, 2005.
[6]J. Z. Chen, S. M. Troian, A. A. Darhuber, and S. Wagner,“Effect of contact angle hysteresis on thermocapillary droplet actuation,” Journal of Applied Physics, vol. 97, no. 1, Article ID 014906, pp. 014906–9, 2005.
[7]T. Franke, A. R. Abate, D. A. Weitz, and A.Wixforth, “Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices,” Lab on a Chip, vol. 9, no. 18, pp. 2625–2627, 2009.
[8]S. Park, P. Y. Chiou, “Light-driven Droplet Manipulation Technologies for Lab-on-a-Chip Applications, Advances in Optoelectronics, Vol 2011, Article ID 909174, 12 pages, 2011.
[9]P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation f single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, 2005.
[10]P. Y. Chiou, Z. Chang, and M. C. Wu, “Droplet manipulation with light on optoelectrowetting device,” Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 133–138, 2008.
[11]J. K. Valley, S. Ningpei, A. Jamshidi, H.-Y. Hsu, and M. C.Wu, “A unified platform for optoelectrowetting and optoelectronic tweezers,” Lab on a Chip, vol. 11, no. 7, pp. 1292–1297, 2011.
[12]J.-T. Yang, J. C. Chen, K.-J. Huang, and J. A. Yeh, “Droplet manipulation on a hydrophobic textured surface with roughened patterns”, Journal Microelectromechanical System, 15(3), June 2006, 697-707.
[13]G. Lippmann, “Relations entre les ph’enom`enes ’electriques et capillaires,” Ann. Chim. Phys., Vol. 5, p. 494, 1875.
[14]B. Berge, “Electrocapillarity and wetting of insulator films by water,” Comptes rendus del’Acad’emie des Sciences, S’eries II , Vol. 317, pp. 157–163, 1993.
[15]C. Quilliet and B. Berge, “Electrowetting: A recent outbreak,” Curr. Opin. Colloid Interface Sci., Vol. 6, pp. 34–39, 2001.
[16]J. Israelachvili, J. Intermolecular and Surface Forces, Academic Press, 1992.
[17]Adamson A W 1990 Physical Chemistry of Surfaces 5th edition (New York: Wiley)
[18]F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter , Vol. 17, pp. R705–R774, 2005.
[19]Sondag-Huethorst J A M and Fokkink L G J 1994 Potential-dependent wetting of electroactive ferroceneterminated alkanethiolate monolayers on gold Langmuir 10 4380
[20]Welters W J J and Fokkink L G 1998 Fast electrically switchable capillary effects Langmuir 14 1535
[21]Quilliet, Catherine, and Bruno Berge. "Electrowetting: a recent outbreak." Current Opinion in Colloid & Interface Science 6.1 (2001): 34-39.
[22]H. J. J. Verheijen and M. W. J. Prins, "Reversible Electrowetting and Trapping of Charge:Model and Experiments," Langmuir 15, 6616-6620, 1999.
[23]B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales,” Science, vol. 283, pp. 57–60, 1999.
[24]M. Grunze, “Surface science: Driven liquids,” Science, vol. 283, pp. 41–42, 1999.
[25]K. Ichimura, S. K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface,” Science, vol. 288, pp. 1624–1626, 2000.
[26]S. Daniel, M. K. Chaudhury, and J. C. Chen, “Fast drop movements resulting from the phase change on a gradient surface,” Science, vol. 291, pp. 633–636, 2001.
[27]D. T.Wasan, A. D. Nikolov, and H. Brenner, “Fluid dynamics: Droplets speeding on surfaces,” Science, vol. 291, pp. 605–606, 2001.
[28]J.-T. Yang, J. C. Chen, K.-J. Huang and J. A. Yeh, J. Microelectromech. Syst., 2006, 15, 697.
[29]T. B. Jones, “Basic theory of dielectrophoresis and electrorotation,” IEEE EMBS 22, 33-42 (2003)
[30]Chang, J. H., & Pak, J. J. (2011). Twin-plate electrowetting for efficient digital microfluidics. Sensors and Actuators B: Chemical, 160(1), 1581-1585.
[31]Moon, H., Cho, S. K., Garrell, R. L., & Kim, C. J. (2002). Low voltage electrowetting-on-dielectric. Journal of applied physics, 92(7), 4080-4087.
[32]Berry, S., Kedzierski, J., & Abedian, B. (2006). Low voltage electrowetting using thin fluoroploymer films. Journal of colloid and interface science, 303(2), 517-524.
[33]Berry, S., Kedzierski, J., & Abedian, B. (2007). Irreversible electrowetting on thin fluoropolymer films. Langmuir, 23(24), 12429-12435.
[34]Seyrat, E., & Hayes, R. A. (2001). Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting. Journal of Applied Physics, 90(3), 1383-1386.
[35]http://www2.dupont.com/DuPont_Home/en_US/
[36]Berthier, J. (2012). Micro-Drops and Digital Microfluidics. Access Online via Elsevier.
[37]Weinstein, I. A., & Zatsepin, A. F. (2006). Extended Abbe diagram for dense flints. Glass Physics and Chemistry, 32(2), 136-140.
[38]http://www.lumtec.com.tw/product4.asp?id=52
[39]www.3M.com/industrial


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 15. 王志弘、曾亞雯,〈獸醫師的專業主義與倫理內涵:一個動物權利角度的探討〉,《思與言》,47卷3期,2009年09月,頁99-150。
2. 10. 方良,〈動物權與動物福利〉,《雜糧與畜產》,256期,1994年11月,頁2-10。
3. 9. 戈定軍,〈歐盟法規:母豬群居對市場的影響〉,《中國畜牧》,44卷6期,2012年6月,頁60-61。
4. 8. 尹章義,〈動物保護:「神豬」考釋--肥豬變神仙的故事〉,《鄉間小路》,32卷2期,2006年2月,頁72-73。
5. 17. 王忠恕,〈動物保護法修正案之重點簡介〉,《農政與農情》,108期,2001年6月,頁23-25。
6. 18. 王忠恕,〈動物保護--執法有辦法,動物保護圓滿出擊〉,《鄉間小路》,34卷2期,2008年2月,頁62-63。
7. 19. 王海明,〈人類中心主義與非人類中心主義辨難〉,《哲學與文化》,34卷8期,2007年8月,頁125-151。
8. 20. 王從恕,〈生命中心倫理在環境價值教育上的應用〉,《南華通識教育研究》,2卷2期,2005年12月,頁43-58。
9. 21. 王敏玲、劉湘瑤,〈西方農場動物福利教材在高中社團教學實施之個案研究〉,《環境教育研究》,6卷1期,2009年,頁85-117。
10. 22. 王湘齡,〈從動物權談動物實驗〉,《應用倫理研究通訊》,13期,2000年1月,頁36-40。
11. 23. 王順美、紀慧玲,〈飼養校犬之動物保護教育和學習之探討〉,《環境教育學刊》,10期,2009年06月,頁41-52。
12. 25. 王順美、詹心懿,〈動物保護--當野生動物遇上了人類 -上-〉,《鄉間小路》,34卷10期,2008年10月,頁70-71。
13. 26. 王順美、詹心懿,〈動物保護--當野生動物遇上了人類 -下-〉,《鄉間小路》,34卷11期,2008年11月,頁72-73。
14. 27. 王萱茹,〈從雷根 (Tom Regan) 與辛格 (Peter Singer) 的觀點談動物安樂死--以臺灣大專院校動物保護社團學生義工案例談起〉,《應用倫理研究通訊》,43期,2007年8月,頁44-60。
15. 34. 左曉芬,〈評:動物解放[Animal Liberation]彼得‧辛格(Peter Singer)著 孟祥森,錢永祥譯〉,《哲學雜誌》,22期,1997年11月,頁246-254。
 
系統版面圖檔 系統版面圖檔