(3.238.130.97) 您好!臺灣時間:2021/05/13 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉皓凱
研究生(外文):Hao-Kai Liu
論文名稱:微流晶片應用於抗癌藥物篩選及腫瘤轉移抑制之研究
論文名稱(外文):Modeling of tumor microenvironments in a microfluidic chip for anti-cancer/anti-migratory drug screening
指導教授:胡文聰胡文聰引用關係
口試委員:黃俊升林璟宏
口試日期:2013-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:34
中文關鍵詞:癌症轉移藥物篩選
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據統計結果,癌症在過去一直是全球十大死因的疾病之一,而造成癌症死亡的主要原因便是癌細胞擴散,臨床的紀錄顯示,當原位癌開始轉移擴散至身體其他組織器官時,病人的存活率有著非常顯著的下降;然而關於癌症轉移方面的了解卻非常有限,原因有:沒有一個適當的平台能夠在體外重建癌症生長的環境進而觀察癌症轉移的現象、動物實驗非常昂貴且觀察不易。所以本論文致力於利用微流體的技術建置一微流晶片,在晶片中模擬癌細胞生長的環境,使癌細胞能夠在此晶片中完成初步的轉移,並能夠對此轉移現象進行長時間且及時的觀察及數據統計。
本實驗使用了兩種不同類型的人類乳癌細胞(MCF7,MDA-MB-231),並且進一步將癌細胞培養呈球形以求更接近癌症在體內的真實形體來進行實驗,在外型上MDA-MB-231的癌細胞是屬於狹長型細胞,相較於MCF7是具備較高轉移能力的癌細胞類型;而在實驗觀測上是以癌細胞轉移的速率及顆數來量化轉移的能力,結果顯示MDA-MB-231確實比MCF7具備了更高的轉移能力,符合預期中的結果,且曾經在晶片中對轉移的癌細胞進行長時間(14天)的細胞培養,證明了此晶片所建置的環境是非常適合癌細胞生長的環境,也證明此晶片具備了進行完整癌症轉移現象觀察的潛力。而在觀察癌症轉移的同時,次晶片亦可同時進行癌症的化療藥物測試,以求能夠篩選出能夠治療癌症且同時能夠抑制癌症轉移的化療藥物,期望未來臨床上能夠提供醫師進行癌症化療時用藥的參考。


In vitro studies of the complex tumor microenvironment facilitate understanding of tumor progression and even drug efficacy. In this study, 3D tumor metastasis and associated anti-cancer drug screening were studied in a microfluidic chip. The metastatic process was modeled by cells extravasate from spheroids composed of breast cancer cell lines (MCF7 and MDA-MB-231). These cells then migrated in response to EGF chemotaxi gradient with and without the influence of anti-cancer drugs.
The chip consists of two parallel top channels and a bottom channel sandwiching a perforated membrane patterned with 50 μm holes. Solution exchange was driven by the pressure gradient caused by different liquid surface level. Herein, an evaporation-driven pump (EDP) was used to replace the traditional pump to maintain the concentration gradient during the experiment.
The migration ability of tumor spheroid had been compared to the parental single cell and results showed that tumor spheroid had an upregulated EGFR expression and a higher invasive ability than parental cells. Also, an anti-cancer drugs, paclitaxel, were introduced to do the drug test on tumor spheroids. The results showed that the IC50 value of tumor spheroid is larger than parental cell, suggesting that tumor spheroid acquire better drug resistance than parental cells. Furthermore, paclitaxel can also be served as an anti-migratory drug so we can obtain the inhibition of cancer metastasis result at the same time.
This device enables study of 3D and 2D cell metastases and associated drug screening on tumor spheroid and might be useful for clinical study of personalized therapy.


致謝……………………………………………………………………………………...i
中文摘要………………………………………………………………………………..ii
ABSTRACT…………………………………………………………………………….iii
CONTENTS…………………………………………………………………………….iv
LIST of FIGURES……………………………………………………………………...vi
LIST of TABLES……………………………………………………………………….vii
1. Introduction………………………………………………………………………….1
2. Material and Method………………………………………………………………..3
2.1 Design concept of the microfluidic device……………………………………….3
2.2 Evaporation-driven pump………………………………………………………..6
2.3 Chip Fabrication………………………………………………………………….6
2.4 Cell lines………………………………………………………………………….7
2.5 Spheroid culture………………………………………………………………….7
2.6 Chemosensitivity assay…………………………………………………………..8
2.7 Evaluation of tumor spheroid size………………………………………………..8
2.8 Experiment procedure……………………………………………………………8
3. Results and Discussion……………………………………………………………..10
3.1 Characterization of evaporation-driven pump and the concentration gradient
generator…………………………………………………………………………10
3.2 In vitro microfluidic chemotaxis assay of 3D spheroids………………………..12
3.2.1 Monolayer v.s. spheroid cells migration assay……………………………13
3.2.2 Effect of different EGF concentration on tumor cell migration…………..15
3.2.3 Effect of different spheroid size on tumor cell migration…………………17
3.3 Anti-cancer drug screening………………………………………………………19
3.3.1 Morphology of cells………………………………………………………..21
3.3.2 Drug toxicity profiles in the chip…………………………………………..23
4. Conclusion…………………………………………………………………………..24
Appendix……………………………………………………………………………….25
Biomimetic nano-cilia generate multicellular tumor spheroids……………………….25
Experimental methods to study tumor cell migration………………………………….29
Reference……………………………………………………………………………….32


1Marx, V. Tracking metastasis and tricking cancer. Nature 494, 133-138 (2013).
2Kirby, B. J. et al. Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS One 7, e35976 (2012).
3Chung, S. et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab on a Chip 9, 269-275 (2009).
4Kalchman, J. et al. A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Microfluidics and Nanofluidics, 1-13 (2012).
5Gurski, L. A., Petrelli, N. J., Jia, X. & Farach-Carson, M. C. 3D matrices for anti-cancer drug testing and development. Oncology Issues 25, 20-25 (2010).
6Becker, J. L. & Blanchard, D. K. Characterization of primary breast carcinomas grown in three-dimensional cultures. Journal of Surgical Research 142, 256-262 (2007).
7David, L. et al. Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta biomaterialia 4, 256-263 (2008).
8Horning, J. L. et al. 3-D tumor model for in vitro evaluation of anticancer drugs. Molecular pharmaceutics 5, 849-862 (2008).
9Friedl, P., Zanker, K. S. & Broecker, E.-B. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microscopy research and technique 43, 369-378 (1998).
10Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708-1712 (2001).
11Friedl, P. & Brocker, E.-B. The biology of cell locomotion within three-dimensional extracellular matrix. Cellular and molecular life sciences CMLS 57, 41-64 (2000).
12Liang, C.-C., Park, A. Y. & Guan, J.-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature protocols 2, 329-333 (2007).
13Kam, Y., Guess, C., Estrada, L., Weidow, B. & Quaranta, V. A novel circular invasion assay mimics in vivo invasive behavior of cancer cell lines and distinguishes single-cell motility in vitro. BMC cancer 8, 198 (2008).
14Su, P. et al. Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer. Oncogene 32, 15-26 (2012).
15Omelchenko, T. & Hall, A. Myosin-IXA regulates collective epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. Current biology 22, 278-288 (2012).
16Rosen, E. M., Meromsky, L., Setter, E., Vinter, D. W. & Goldberg, I. D. Quantitation of cytokine-stimulated migration of endothelium and epithelium by a new assay using microcarrier beads. Experimental cell research 186, 22-31 (1990).
17Harisi, R. et al. Differential inhibition of single and cluster type tumor cell migration. Anticancer research 29, 2981-2985 (2009).
18Qi, S. et al. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma. PloS one 7, e38842 (2012).
19Zhang, Q., Liu, T. & Qin, J. A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. Lab on a chip 12, 2837-2842 (2012).
20Bockhorn, M., Roberge, S., Sousa, C., Jain, R. K. & Munn, L. L. Differential gene expression in metastasizing cells shed from kidney tumors. Cancer research 64, 2469-2473 (2004).
21Vernon, R. B. & Gooden, M. D. New technologies in vitro for analysis of cell movement on or within collagen gels. Matrix biology 21, 661-669 (2002).
22Yarrow, J. C., Totsukawa, G., Charras, G. T. & Mitchison, T. J. Screening for cell migration inhibitors via automated microscopy reveals a Rho-kinase inhibitor. Chemistry & biology 12, 385-395 (2005).
23Tung, Y.-C. et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473-478 (2011).
24Yu, L., Chen, M. C. & Cheung, K. C. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab on a Chip 10, 2424-2432 (2010).
25Wu, L. Y., Di Carlo, D. & Lee, L. P. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomedical microdevices 10, 197-202 (2008).
26Burgess, B. T., Myles, J. L. & Dickinson, R. B. Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of RGD-grafted collagen. Annals of biomedical engineering 28, 110-118 (2000).
27Abhyankar, V. V. et al. A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab on a Chip 8, 1507-1515 (2008).
28Yu, D. et al. c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer research 54, 3260-3266 (1994).
29Thorne, R. G., Hrabětova, S. & Nicholson, C. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. Journal of neurophysiology 92, 3471-3481 (2004).
30Bernards, R. & Weinberg, R. A. Metastasis genes: a progression puzzle. Nature 418, 823-823 (2002).
31Pantel, K., Cote, R. J. & Fodstad, O. Detection and clinical importance of micrometastatic disease. Journal of the National Cancer Institute 91, 1113-1124 (1999).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 龔鵬程:〈論李商隱的櫻桃詩——假擬、代言、戲謔詩體與抒情傳統間的糾葛〉,《中國書目季刊》第22卷第1期(1988年6月),頁33-46。
2. 鮑霦,〈蘇陶「詠三良」「詠荊軻」詩較論〉,《中華文化復興月刊》第11卷第10期(1978年10月)頁55-57。
3. 鮑霦,〈蘇陶「詠三良」「詠荊軻」詩較論〉,《中華文化復興月刊》第11卷第10期(1978年10月)頁55-57。
4. 蕭麗華:〈東坡詩論中的禪喻〉,《佛學研究中心學報》第6期(2001年7月),頁243-270。
5. 蕭麗華:〈東坡詩論中的禪喻〉,《佛學研究中心學報》第6期(2001年7月),頁243-270。
6. 蕭玫:〈從〈愛蓮說〉「出淤泥而不染」一語論周敦頤援佛入儒之文學轉化〉,《宗教哲學》第56期(2011年6月),頁113-144。
7. 蕭玫:〈從〈愛蓮說〉「出淤泥而不染」一語論周敦頤援佛入儒之文學轉化〉,《宗教哲學》第56期(2011年6月),頁113-144。
8. 劉昭明、黃嘉伶合撰:〈王安石誣陷蘇軾運售私鹽始末考──兼論蘇軾與程之才之恩怨情仇〉,《文與哲》第7期(2005年12月),頁209-250。
9. 劉昭明、黃嘉伶合撰:〈王安石誣陷蘇軾運售私鹽始末考──兼論蘇軾與程之才之恩怨情仇〉,《文與哲》第7期(2005年12月),頁209-250。
10. 唐海濤:〈鮑照模擬詩的成就〉,《國立中央圖書館館刊》第20卷第2期(1987年12月),頁51-62。
11. 唐海濤:〈鮑照模擬詩的成就〉,《國立中央圖書館館刊》第20卷第2期(1987年12月),頁51-62。
12. 林素芬:〈與苦難共生:論邵雍安樂哲學之建構〉,《慈濟大學人文社會科學學刊》第11期(2011年6月),頁136-162。
13. 林素芬:〈與苦難共生:論邵雍安樂哲學之建構〉,《慈濟大學人文社會科學學刊》第11期(2011年6月),頁136-162。
14. 林文月:〈陸機的擬古詩〉,《幼獅學誌》第12卷第3期(1989年5月),頁60-86。
15. 林文月:〈陸機的擬古詩〉,《幼獅學誌》第12卷第3期(1989年5月),頁60-86。
 
系統版面圖檔 系統版面圖檔