(3.236.214.19) 您好!臺灣時間:2021/05/10 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉耀文
研究生(外文):Yao-Wen Yeah
論文名稱:發展自適性超音波溫度影像監控射頻燒灼
論文名稱(外文):Development of self-adaptive ultrasonictemperature image for monitoring RF ablation
指導教授:張建成張建成引用關係
口試委員:張家歐黃執中黃世霖
口試日期:2013-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:自適性超音波溫度影像射頻燒灼回音訊號偏移互相關演算
外文關鍵詞:self-adaptiveultrasonic temperature imageRF ablationecho shiftcross correlation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前治療肝癌較主流的方式中,不外乎手術切除、射頻燒灼療法、經動脈栓塞、化療,以及近來新興之標靶療法等。其中射頻燒灼療法屬於根除性治療中較簡易且有效率的療法,但治療過程中,若血管的冷卻效應使溫度提升不足或持續時間不夠,便會導致治療不完全。
本研究採用以超音波為媒介發展具有即時性與自適性的溫度影像監控系統;利用互相關分析方法計算回音訊號偏移,並藉此估測溫度變化。回音訊號偏移主要原因來自於聲速改變與組織的熱膨脹,此兩種效應交互作用對回音訊號造成的影響由係數k代表,但隨著溫度超過43℃或組織結構差異等因素,係數k往往不為常數或固定函數。基於上述情況,本研究透過自適性的概念找出係數k的變化趨勢,藉此達成即時性的溫度監控。
實驗中使用不同射頻燒灼的功率對豬肝組織表面進行加熱,並利用紅外線攝影機與熱電偶呈現空間溫度分佈,做為超音波溫度影像結果的對照。由結果顯示,自適性係數k的計算方法於溫度超過45℃後依然能有效估測溫度分佈;有效估測溫度可達70℃,為超音波溫度影像提供一個可行概念。


The main therapeutic method of hepatic tumors includes surgery, ethanol injection, RF ablation, arterial embolization, chemotherapy and targeted therapy. RF ablation is a useful method with several advantages. But cooling effect of the artery may cause the therapy incompletely which may be due in part to the inability to monitor accurately temperature profiles in the tissue being ablated, and to visualize the subsequent zone of necrosis formed.
The goal of this study is investigate self-adaptive ultrasonic methods for the real-time and in vivo monitoring of the spatial distribution of heating and temperature elevation. Temperature estimates are obtained using a cross-correlation algorithm to calculate the echo shift applied to ultrasound echo signal data acquired at discrete intervals during heating. The change of the temperature is proportional to the echo shift by coefficient k which is combination of sound speed dependent temperature and thermo expansion of tissues.
According to the difference of the temperature and the structure of tissue, coefficient k isn’t always a constant, especially as the temperature is over 43 degree. So we find the coefficient k at different temperature through the self-adaptive concept to monitor the real time temperature change.
We use the different power of RF ablation to heating the vitro liver of pigs, and measuring the special temperature profile by infrared camera and thermocouple at the same time. The results showed that, method of self-adaptive coefficient k can estimates temperature accurately even if the temperature is over 43 degree reached to 70 degree.


第1章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 文獻回顧 3
1.4 研究目的 9
1.5 論文架構 10
第2章 基礎理論 11
2.1 超音波原理 11
2.1.1 超音波原理 11
2.1.2 超音波換能器與聲場 14
2.2 超音波影像 18
2.2.1 阻抗 18
2.2.2 反射、折射與散射 19
2.2.3 成像過程 23
2.2.4 超音波影像之軸向解析度 (axial resolution) 26
2.2.5 超音波影像之側向解析度 (lateral resolution) 28
2.3 超音波溫度估測原理 29
2.3.1 互相關分析方法(cross correlation method) 29
2.3.2 回音訊號偏移法 32
2.3.3 k值的探討 34
第3章 實驗方法 35
3.1 實驗架設與方法 35
3.1.1 超音波系統 35
3.1.2 射頻燒灼系統 36
3.1.3 溫度量測系統 37
3.1.4 實驗流程 37
3.2 超音波溫度影像系統 39
第4章 實驗結果與討論 41
4.1 5Watt 實驗結果 42
4.2 10Watt 實驗結果 45
4.3 15Watt 實驗結果 48
4.4 20Watt 實驗結果 51
4.5 結果討論 54
4.5.1 紅外線與熱電偶讀數不符 54
4.5.2 中心偏移現象與係數k振盪現象 54
4.5.3 波紋現象與濾波器 57
4.5.4 誤差分析 58
第5章 結論與未來展望 62
5.1 結論 62
5.2 未來展望 62
參考資料 64
附錄A 66



1.E. A. Sickles, R. A. Filly, and P. W. Callen, "Benign Breast-Lesions - Ultrasound Detection and Diagnosis." Radiology, 1984. 151(2): p. 467-470.
2.Tsuneo Yoshida, Masayoshi Mori, Yasuharu Nimura, Gen-ichi Hikita, Shinpachi Takagishi, Katsumi Nakanishi, and Shigeo Satomura, "Analysis of Heart Motion with Ultrasonic Doppler Method and Its Clinical Application." American Heart Journal, 1961. 61(1): p. 61-75.
3.T. Loupas, J. T. Powers, and R. W. Gill, "An Axial Velocity Estimator for Ultrasound Blood Flow Imaging, Based on a Full Evaluation of the Doppler Equation by Means of a Two-Dimensional Autocorrelation Approach." IEEE Tansactions on Ultrasonics, 1995. 42(4): p. 672-688.
4.S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, "Thermal Ablation Therapy for Focal Malignancy: A Unified Approach to Underlying Principles, Techniques, and Diagnostic Imaging Guidance." Am J Roentgenol, 2000. 174(2): p. 323-331.
5.D. E. Malone, L. Lesiuk, A. P. Brady, D. R. Wyman, and B. C. Wilson, "Hepatic Interstitial Laser Photocoagulation: Demonstration and Possible Clin-Ical Importance of Intravascular Gas." Radiology, 1994. 193: p. 233-237.
6.S. Ueno and M. Hashimoto, "Ultrasound Thermometry in Hyperthermia." Ultrasonic Symposium, 1990. 3: p. 1645 - 1652.
7.W. L. Straube and R. M. Arthur, "Theoretical Estimation of the Temperature Dependence of Backscattered Ultrasonic Power for Noninvasive Thermometry." Ultrasound in Med. & Biol, 1994. 20(9): p. 915-922.
8.R. L. Nasoni, T. Bowen, and W. G. Connor, "In Vivo Temperature Dependence of Ultrasound Speed in Tissue and Its Application to Noninvasive Temperature Monitoring." Ultrasonic Imaging, 1979. 1(1): p. 34-43.
9.U. Techavipoo, T. Varghese, Q. Chen, and T. A. Stiles, "Temperature Dependence of Ultrasonic Propagation Speed and Attenuation in Excised Canine Liver Tissue Measured Using Transmitted and Reflected Pulses." Acoustical Society of America, 2004. 115 (6): p. 2859-2865.
10.R. M. Morenoa and C. A. Damianou, "Noninvasive Temperature Estimation in Tissue Via Ultrasound Echo-Shifts. Part I. Analytical Model." Acoustical Society of America, 1996. 100(4): p. 2514-2521.
11.C. Simon, P. VanBaren, and E. S. Ebbini, "Two-Dimensional Temperature Estimation Using Diagnostic Ultrasound." IEEE transactions on ultrasonics, 1998. 45(4): p. 1088-1099.
12.R. Seip, P. VanBaren, C. Simon, and E. S. Ebbini, "Non-Invasive Spatio-Temporal Temperature Estimation Using Diagnostic Ultrasound." IEEE Ultrasonics Symposium, 1995. 95(6): p. 1613-1616.
13.D. Liu and E. S. Ebbini, "Real-Time Two-Dimensional Temperature Imaging Using Ultrasound." Annual International Conference of the IEEE EMBS, 2009: p. 1971-1974.
14.C. A. Damianou, N. T. Sanghvi, and F. J. Fry, "Ultrasonic Attenuation of Dog Tissues as a Function of Temperature." IEEE Ultrasonics Symposium, 1995. 95(6): p. 1203-1206.
15.蕭洪岳, 以離體組織實驗模式發展逆散射能量變化為基礎之超音波溫度影像, 2010, 國立台灣大學: 應用力學研究所.
16.C. Rieder, T. Kroger, and C. Schumann, "Gpu-Based Real-Time Approximation of the Ablation Zone for Radiofrequency Ablation." IEEE Trans Vis Comput Graph, 2011. 17(12): p. 1812-1821.
17.T. Kroger, T. Patz, I. Altrogge, A. Schenk, K. S. Lehmann, B. B. Frericks, J. P. Ritz, H. O. Peitgen, and T. Preusser, "Fast Estimation of the Vascular Cooling in Rfa Based on Numerical Simulation." The Open Biomedical Engineering Journal, 2010. 4: p. 16-26.
18.R. Barauskas, A. Gulbinas, and G. Barauskas, "Investigation of Radiofrequency Ablation Process in Liver Tissue by Finite Element Modeling and Experiment." Medicina, 2007. 43(4): p. 310-325.
19.I. A. Hein and W. D. O’Brien, "Current Time-Domain Methods for Assessing Tissue Motion by Analysis from Reflected Ultrasound Echoes-a Review." IEEE Transactions on Ultrasonics, 1993. 40(2): p. 84-102.
20.R. Seip and E. S. Ebbini, "Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound." IEEE Transactions on Biomedical Engineering, 1995. 42(8): p. 828-839.
21.R. M. Morenoa and C. A. Damianou, "Noninvasive Temperature Estimation in Tissue Via Ultrasound Echo-Shifts. Part Ii. In Vitro Study." Acoustical Society of America, 1996. 100(4): p. 2522-2530.
22.K. E. Thomenius, "Evolution of Ultrasound Beamformers." IEEE Ultrasonic Symposium, 1996. 2: p. 1615-1622.
23.M. Pernot, M. Tanter, J. Bercoff, K. R. Waters, and M. Fink, "Temperature Estimation Using Ultrasonic Spatial Compound Imaging." IEEE Transactions on Ultrasonics, 2004. 51(5): p. 606-615.
24.U. Techavipoo, Q. Chen, and T. Varghese, "Ultrasonic Noninvasive Temperature Estimation Using Echoshift Gradient Maps: Simulation Results." Ultrasonic Imaging, 2005. 27: p. 166-180.
25.M. J. Daniels, T. Varghese, E. L. Madsen, and J. A. Zagzebski, "Non-Invasive Ultrasound-Based Temperature Imaging for Monitoring Radiofrequency Heating—Phantom Results." Physics in Medicine and Biology, 2007. 52: p. 4827-4843.
26.M. J. Daniels, J. Jiang, and T. Varghese, "Ultrasound Simulation of Real-Time Temperature Estimation During Radiofrequency Ablation Using Finite Element Models." Ultrasonics, 2008. 48(1): p. 40-55.
27.F. W. Kremkau, Sonography Principles and Instruments. 2011, Taiwan: Elsevier Taiwan LLC.
28.余承霏, 使用超因波訊息理論熵定量生物組織特性, 2008, 國立台灣大學: 應用力學研究所.
29.Thomas L. Szabo, Diagnostic Ultrasound Imaging : Inside Out. Academic Press Series in Biomedical Engineering. 2004, Amsterdam ; Boston: Elsevier Academic Press. xxii, 549 p.
30.P. H. Tsui and S. H. Wang, "The Effect of Transducer Characteristics on the Estimation of Nakagami Paramater as a Function of Scatterer Concentration." Ultrasound in Medicine and Biology, 2004. 30(10): p. 1345-1353.
31.R. C. Gonzalez and r. E. Woods, Digital Image Processing 2/E. 2004, Taiwan: Pearson Education Taiwan.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔