( 您好!臺灣時間:2022/07/04 16:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Don-Lin Lee
論文名稱(外文):Trapping and separation of particles and cells using dielectrophoresis in microfluidic system
外文關鍵詞:dielectrophoresisparticle separationgroove design
  • 被引用被引用:1
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

A method was proposed for selective isolation and separation of particles/cells of similar sizes based on their different Clausius-Mossotti factors using dielectrophoresis and microfluidics in the literature. The associated device is a straight micro channel (glass for the bottom wall and PDMS for the rest walls) with four grooves on its ceiling for capturing particles, and two electrodes on both sides of the groove region for generating electric field. A particle may be carried downstream by the imposed fluid stream or pushed into the groove, depending on the local force balance between dielectrophoretic force, fluid drag, gravity and buoyancy. The present study aims to clarify the capturing efficiency of various particles/cells under different geometric designs and operating conditions, and hope to develop a microfluidic chip capable of separating different cells of similar size efficiently. In order to simplify the problem, a single groove design is employed in the present experiment. Capture rates for polystyrene particles, two lung cancer cells, CL1-0 and CL1-5 (more invasive), and one colorectal cancer cells, Colo205, were measured for different channel heights, groove widths, applied electric frequencies, and background volume flow rates. The device was also demonstrated of capturing CL1-0 cells from a mixture of CL1-0 and blood cells. A modified design of the device was also proposed and tested. The groove and the electrodes are orientated obliquely to the background flow in the modified design (but are perpendicular in the original design), such that the captured particles/cells in the groove can be guided smoothly and effectively to designed destination downstream.

致謝 I
摘要 II
Abstract III
目錄 IV
圖表目錄 VII
第一章 緒論 1
1-1研究背景 1
1-2研究目的 2
1-3文獻回顧 3
1-4研究動機 4
1-5本文架構 5
第二章 原理 7
2-1 介電泳介紹 7
2-2等效的圓球模型 8
2-3等效偶極矩 10
2-4柯莫氏因子(CM factor) 11
2-5介電泳力 13
2-6正負介電泳力 14
2-7近牆介電泳效應 15
2-8黏滯拖曳力 18
2-9粒子/細胞軌跡(Particle/Cell Tracing) 18
第三章 研究方法與設備 20
3-1 以微機電技術(MENS)製作電極晶片 20
3-1-1電極設計 21
3-1-2清洗基材 23
3-1-3金屬層蒸鍍 24
3-1-4利用微機電製成製作電極 26
3-2利微機電製程技術製作微流道母模 28
3-2-1微流道設計 29
3-2-2微流道母模製作 31
3-2-3PDMS澆注與翻模 34
3-2-4PDMS微流道與電極接合 35
3-4實驗溶液與粒子/細胞選配 37
3-4-1 RPMI細胞培養液的調配 38
3-4-2實驗溶液的調配 39
3-4-3肺腺癌細胞(CL1-0、CL1-5)繼代培養與冷凍保存 39
3-4-4大腸癌細胞(Colo205)繼代培養與冷凍保存 42
3-5實驗設備及架設 42
3-6 COMSOL軟體介紹與邊界設定 45
第四章 研究結果及討論 47
4-1微粒捕捉晶片—PS微粒的結果 47
4-1-1聚苯乙烯粒子(PS particle)的捕捉 51
4-1-2操作頻率對捕捉率的影響 55
4-1-3不同高度尺寸捕捉率比較 58
4-1-4不同凹槽寬度尺寸抓取率比較 60
4-2微粒捕捉晶片—細胞的結果 61
4-2-1 CL1-0細胞尺寸分佈 61
4-2-2CL1-0細胞抓取實驗 63
4-2-3頻率對CL1-0細胞捕捉率的影響 65
4-2-4 CL1-5細胞尺寸分佈 66
4-2-5螢光CL1-5抓取實驗 67
4-2-6高相似性細胞分離的可能性 69
4-2-7模擬檢體中抓取擴散癌症細胞之實驗 71
4-3微粒分離晶片-具導流功能的微粒捕捉晶片 72
4-3-1導流聚苯乙烯粒子(PS particle) 72
4-3-2 Colo205細胞尺寸分布情形 73
4-3-3 Colo205細胞導流實驗 74
第五章 結論及未來展望 77
5-1結論 77
5-2未來展望 79
參考文獻及書目 81

[1]Griffith D.J., “Introduction to Electrodynamics”, Prentice Hall, New Jersey, 1999.
[2]Hughes M. P., “Nanoelectromechanics in Engineering and Biology”, CRC PRESS, London, 2003.
[3]Jones T. B., “Electromechanics of Particles”, Cambridge University Press, Cambridge, 1995.
[4]Lo Y. J., and U. Lei, “Quasi-static force and torque on spherical particles under generalized dielectrophoresis in the vicinity of walls”, Applied Physics Letters, vol. 95, 253701, 2009.
[5]Lin Y. M., and U. Lei., “Separation of Bio-particles using Dielectrophoresis and Microfluidics”, National Taiwan University Master Thesis.
[6]Lo Y. J., and U Lei., “Experimental validation of the theory of wall effect on dielectrophoresis”, Applied Physics Letters, vol. 97, 093702, 2010.
[7]U Lei., and Lo Y. J., “Review of the theory of generalised dielectrophoresis”, IET NANOBIOTECHNOLOG, vol. 5 (3), 86-106, 2011.
[8]Pohl H.A., “Dielectrophoresis the behavior of neutral matter in nonuniform electric fields”, Cambridge, Cambridge University Press, 1978.
[9]Markx G.H., M.S. Talary, R. Pethig, “Separation of viable and non-viable yeast using dielectrophoresis”, Journal of Biotechnology, vol. 32, pp.29-37, 1994.
[10]Lo Y. J., U. Lei and P. C. Yang , “Selective separation and isolation of particle/cells of similar sizes using dielectrophoresis”, MicroTAS, 2011.
[11]Jen C. P., Maslov N. A., H. Y. Shih, Y. C.Lee and F. B. Hsiao, “Particle focusing in a contactless dielectrophoretic microfluidic chip with insulating structures”, Microsyst Technol, 2012.
[12]Driesche S. V. D., V. Rao, R. E. Dietmar, W. Witarski and M. J. Vellekoop, “Continuous cell from separation by traveling wave dielectrophoresis”, Sensors and Actuators B, 2011.
[13]Wang M. W., “Using Chelating Chitosan Nanobeads and a Microfluidic-Microelectric Trap to Sort Lead(II) in a Continuous Bloodstream Flow”, Journal of the Electrochemical Society, 2011
[14]Ling H. S., Y. C. Lam and K. S. Chian, “Continuous Cell Separation Using Dielectrophoresis through Asymmetric and Periodic Microelectrode Array”, Analytical chemistry, 2012.
[15]Wang M. W., “Using Dielectrophoresis to Trap Nanobead/Stem Cell Compounds in Continuous Flow”, Journal of the Electrochemical Society, 2009.
[16]Cheng I. F., “Dielectrophoresis-Based Microfluidic Devices and Their Application on Manipulating and Detecting Bioparticles/Molecular”, National Cheng Kung University Doctoral Dissertation, 2010.
[17]Davis J. M., J. C. Giddings “Feasibility study of dielectrical field-flow fractionation”, Sepa. Sci. and Tech., vol. 21, pp.969-989 , 1986.
[18]Yang C. Y., U. Lei, “Dielectrophoretic force and torque on an ellipsoid in an arbitrary time varying electric field”, Applied Physics letters, vol. 90, 153901, 2007.

第一頁 上一頁 下一頁 最後一頁 top