(3.235.245.219) 您好!臺灣時間:2021/05/07 21:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李東霖
研究生(外文):Don-Lin Lee
論文名稱:在微流系統中利用介電泳力捕捉及分離微粒與細胞
論文名稱(外文):Trapping and separation of particles and cells using dielectrophoresis in microfluidic system
指導教授:李雨李雨引用關係
口試委員:沈弘俊楊政穎
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:82
中文關鍵詞:介電泳微粒分離凹槽流道設計
外文關鍵詞:dielectrophoresisparticle separationgroove design
相關次數:
  • 被引用被引用:1
  • 點閱點閱:144
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
介電泳力可依據微粒或細胞柯莫氏因子的不同,將尺寸接近的微粒或細胞作選擇性的捕捉與分離。相關裝置為一直線微流道(底壁為玻璃,其他壁面為PDMS),流道上壁建構有四個凹槽,凹槽區上下游兩側底壁上各建置一電極,以產生電場。依據介電泳力、流體拖曳力、重力和浮力平衡的結果,不同微粒會被推入凹槽被捕捉或是被流體帶住下游。本研究企圖釐清此設計的各項幾何參數及操作條件,以研發一項能有效分離類同大小但不同種類微粒的微流裝置。為了簡化問題,本文將就單一凹槽的設計進行研究。以聚苯乙烯粒子、肺腺癌細胞(CL1-0及CL1-5)與大腸癌細胞(Colo205)進行實驗,探討電場頻率(100kHz~10MHz)、流道高度(25μm、30μm、35μm)、凹槽寬度(35μm、45μm)和背景流體流速(20~130μl/h)等參數對微粒捕捉率的影響,統計出適當的操作範圍。經由實驗,本裝置亦被證明可用於捕捉懸浮於血液中的肺腺癌細胞。最後本文提出一項改良裝置並予以測試,其設計為凹槽與電極修改為與流道傾斜四十五度的結構,此一改良可將捕捉於凹槽內的微粒平順而有效地導流至系統中預設的目標位置。

A method was proposed for selective isolation and separation of particles/cells of similar sizes based on their different Clausius-Mossotti factors using dielectrophoresis and microfluidics in the literature. The associated device is a straight micro channel (glass for the bottom wall and PDMS for the rest walls) with four grooves on its ceiling for capturing particles, and two electrodes on both sides of the groove region for generating electric field. A particle may be carried downstream by the imposed fluid stream or pushed into the groove, depending on the local force balance between dielectrophoretic force, fluid drag, gravity and buoyancy. The present study aims to clarify the capturing efficiency of various particles/cells under different geometric designs and operating conditions, and hope to develop a microfluidic chip capable of separating different cells of similar size efficiently. In order to simplify the problem, a single groove design is employed in the present experiment. Capture rates for polystyrene particles, two lung cancer cells, CL1-0 and CL1-5 (more invasive), and one colorectal cancer cells, Colo205, were measured for different channel heights, groove widths, applied electric frequencies, and background volume flow rates. The device was also demonstrated of capturing CL1-0 cells from a mixture of CL1-0 and blood cells. A modified design of the device was also proposed and tested. The groove and the electrodes are orientated obliquely to the background flow in the modified design (but are perpendicular in the original design), such that the captured particles/cells in the groove can be guided smoothly and effectively to designed destination downstream.

致謝 I
摘要 II
Abstract III
目錄 IV
圖表目錄 VII
第一章 緒論 1
1-1研究背景 1
1-2研究目的 2
1-3文獻回顧 3
1-4研究動機 4
1-5本文架構 5
第二章 原理 7
2-1 介電泳介紹 7
2-2等效的圓球模型 8
2-3等效偶極矩 10
2-4柯莫氏因子(CM factor) 11
2-5介電泳力 13
2-6正負介電泳力 14
2-7近牆介電泳效應 15
2-8黏滯拖曳力 18
2-9粒子/細胞軌跡(Particle/Cell Tracing) 18
第三章 研究方法與設備 20
3-1 以微機電技術(MENS)製作電極晶片 20
3-1-1電極設計 21
3-1-2清洗基材 23
3-1-3金屬層蒸鍍 24
3-1-4利用微機電製成製作電極 26
3-2利微機電製程技術製作微流道母模 28
3-2-1微流道設計 29
3-2-2微流道母模製作 31
3-2-3PDMS澆注與翻模 34
3-2-4PDMS微流道與電極接合 35
3-4實驗溶液與粒子/細胞選配 37
3-4-1 RPMI細胞培養液的調配 38
3-4-2實驗溶液的調配 39
3-4-3肺腺癌細胞(CL1-0、CL1-5)繼代培養與冷凍保存 39
3-4-4大腸癌細胞(Colo205)繼代培養與冷凍保存 42
3-5實驗設備及架設 42
3-6 COMSOL軟體介紹與邊界設定 45
第四章 研究結果及討論 47
4-1微粒捕捉晶片—PS微粒的結果 47
4-1-1聚苯乙烯粒子(PS particle)的捕捉 51
4-1-2操作頻率對捕捉率的影響 55
4-1-3不同高度尺寸捕捉率比較 58
4-1-4不同凹槽寬度尺寸抓取率比較 60
4-2微粒捕捉晶片—細胞的結果 61
4-2-1 CL1-0細胞尺寸分佈 61
4-2-2CL1-0細胞抓取實驗 63
4-2-3頻率對CL1-0細胞捕捉率的影響 65
4-2-4 CL1-5細胞尺寸分佈 66
4-2-5螢光CL1-5抓取實驗 67
4-2-6高相似性細胞分離的可能性 69
4-2-7模擬檢體中抓取擴散癌症細胞之實驗 71
4-3微粒分離晶片-具導流功能的微粒捕捉晶片 72
4-3-1導流聚苯乙烯粒子(PS particle) 72
4-3-2 Colo205細胞尺寸分布情形 73
4-3-3 Colo205細胞導流實驗 74
第五章 結論及未來展望 77
5-1結論 77
5-2未來展望 79
參考文獻及書目 81



[1]Griffith D.J., “Introduction to Electrodynamics”, Prentice Hall, New Jersey, 1999.
[2]Hughes M. P., “Nanoelectromechanics in Engineering and Biology”, CRC PRESS, London, 2003.
[3]Jones T. B., “Electromechanics of Particles”, Cambridge University Press, Cambridge, 1995.
[4]Lo Y. J., and U. Lei, “Quasi-static force and torque on spherical particles under generalized dielectrophoresis in the vicinity of walls”, Applied Physics Letters, vol. 95, 253701, 2009.
[5]Lin Y. M., and U. Lei., “Separation of Bio-particles using Dielectrophoresis and Microfluidics”, National Taiwan University Master Thesis.
[6]Lo Y. J., and U Lei., “Experimental validation of the theory of wall effect on dielectrophoresis”, Applied Physics Letters, vol. 97, 093702, 2010.
[7]U Lei., and Lo Y. J., “Review of the theory of generalised dielectrophoresis”, IET NANOBIOTECHNOLOG, vol. 5 (3), 86-106, 2011.
[8]Pohl H.A., “Dielectrophoresis the behavior of neutral matter in nonuniform electric fields”, Cambridge, Cambridge University Press, 1978.
[9]Markx G.H., M.S. Talary, R. Pethig, “Separation of viable and non-viable yeast using dielectrophoresis”, Journal of Biotechnology, vol. 32, pp.29-37, 1994.
[10]Lo Y. J., U. Lei and P. C. Yang , “Selective separation and isolation of particle/cells of similar sizes using dielectrophoresis”, MicroTAS, 2011.
[11]Jen C. P., Maslov N. A., H. Y. Shih, Y. C.Lee and F. B. Hsiao, “Particle focusing in a contactless dielectrophoretic microfluidic chip with insulating structures”, Microsyst Technol, 2012.
[12]Driesche S. V. D., V. Rao, R. E. Dietmar, W. Witarski and M. J. Vellekoop, “Continuous cell from separation by traveling wave dielectrophoresis”, Sensors and Actuators B, 2011.
[13]Wang M. W., “Using Chelating Chitosan Nanobeads and a Microfluidic-Microelectric Trap to Sort Lead(II) in a Continuous Bloodstream Flow”, Journal of the Electrochemical Society, 2011
[14]Ling H. S., Y. C. Lam and K. S. Chian, “Continuous Cell Separation Using Dielectrophoresis through Asymmetric and Periodic Microelectrode Array”, Analytical chemistry, 2012.
[15]Wang M. W., “Using Dielectrophoresis to Trap Nanobead/Stem Cell Compounds in Continuous Flow”, Journal of the Electrochemical Society, 2009.
[16]Cheng I. F., “Dielectrophoresis-Based Microfluidic Devices and Their Application on Manipulating and Detecting Bioparticles/Molecular”, National Cheng Kung University Doctoral Dissertation, 2010.
[17]Davis J. M., J. C. Giddings “Feasibility study of dielectrical field-flow fractionation”, Sepa. Sci. and Tech., vol. 21, pp.969-989 , 1986.
[18]Yang C. Y., U. Lei, “Dielectrophoretic force and torque on an ellipsoid in an arbitrary time varying electric field”, Applied Physics letters, vol. 90, 153901, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔