( 您好!臺灣時間:2021/05/12 21:25
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Yu-Ming Chiang
論文名稱(外文):Numerical study and theoretical analysis ofwave-current interactions
外文關鍵詞:wave-current interactionhydrodynamicradiation stressSUNTANSM08
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為一系列探討波流耦合模式的流場。本篇以Mellor在2008年提出的輻射應力(稱M08)為研究起點。我們使用包含M08的SUNTANS (Fringer et al. [2006])來模擬離岸流。然而,我們希望可以發展出比以線性波更具真實性的輻射應力,其中我們考慮非對稱波的輻射應力,由結果卻發現使用相位平均的線性波與非對稱波的差異為一個基底常數。接著,考慮二階的Stokes非線性波,並為了表現出波峰波谷區間的差異性,我們採用半相位平均方式計算輻射應力,結果卻發現由線性波疊加的非線性波無法表現出此差異性。另一方面,我們對於M08將波流流速定義為常數感到懷疑,因此我們建置一個模式,來模擬由壓力梯度所驅動的波流耦合模式,我們將分別去計算波浪流速及整體的流速,再利用整體流速減去波浪流速得到一殘餘流速,而這殘餘流速即為波流耦合下所導致的波流速度。我們設置了一個簡單的理想平坦地形,透過此研究的模式,模擬出這個殘餘流速的分佈情形以及它所引起的自由水面的高度變化。結果顯示,殘餘流速並不為一個常數,而是一個具有週期性運動分布的流場,這個結果也成功的驗證了我們的懷疑。此外,我們並比較波浪流速和殘餘流速輻射應力,此結果也符合統御方程式的物理闡釋。在這研究中,我們已經初步完成此波流耦合模式的設置,並以驗證其正確性。

In this thesis, we study wave-current interactions using different approaches. We begin with the radiation stress by Mellor [2008] (M08). First, we use M08 in the SUNTANS model to simulate the rip current. In order to obtain the more realistic radiation stress, we examine the radiation stress using the asymmetric wave. However, the result is as same as that obtained from the linear wave but multiplying with a different constant coefficient, which is due to the phase-averaged method. In this regard, we develop a framework in which the half-cycle average is applied to the second-order Stokes wave, such that, individual characteristics of the crest and the trough can be represented. However, the result shows that the non-linear wave which is series of linear waves cannot show the skewness even with the half-cycle average. On the other hand, we are skeptical about all existing RS formulations that treat the wave-induced flow as a constant current. For this purpose, we develop a simplified 2DV hydrodynamics model to produce the wave-current flow field which is forced by the pressure gradient disregarding the wave shape. Using the model, we demonstrate that the RS-induced flow is a periodic, which is different from existing studies and confirm our hypothesis. Different contributions to the wave-induced current are also examined.

口試委員審定書 I
致謝 II
中文摘要 III
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Wave-Current Interaction 3
Chapter 2 Review of the Wave Theory 8
2.1 inear Wave Theory 8
2.1.1 Assumptions and the simplified governing equations 8
2.1.2 The basic solution for the simplified equation 10
2.2 Brief Introduction of the Wave Transformation 12
2.2.1 Wave shoaling 12
2.2.2 Wave breaking 14
2.2.3 Wave setup and set down 15
2.3 Review of the Second-Order Stokes Wave Theory 19
2.3.1 Introduction of the Stokes wave theory 19
2.3.2 The solution for the equation of the second-order Stokes wave 20
Chapter 3 Modeling Wave-Current Interaction 24
3.1 verview of M08 – Linear Waves 24
3.2 Modeling Wave-Current Interactions in SUNTANS 26
3.3 Asymmetric Waves 30
3.3.1 Motivation 30
3.3.2 Simulation of the radiation stress in the asymmetric wave 31
Chapter 4 Modeling Wave-Current Interaction 33
4.1 alf-Cycle Average of the Second-Order Stokes Wave 33
4.1.1 uβuαsz 35
4.1.2 Pressure gradient 38
4.1.3 Final result 42
4.2 Phase-Resolving Radiation Stress 45
4.2.1 Initialization 46
4.2.2 Computation process 46
Chapter 5 Discussion 50
5.1 Validation Case 50
5.2 Surface Elevation Induced by 51
5.3 Sources of Wave-Induced Current 53
Chapter 6 Conclusion and Futures Works 58
6.1 Conclusion 58
6.2 Future Works 59
Appendix The Mean Flow Energy Equation 61
Reference 63

Abreu, T., P. Silva, F. Sancho and A. Temperlle (2010). "Analytical approximate wave form for asymmetric waves." Coastal Engineering 57.
Ardhuin, F., N. Rascle and K. A. Belibassakis (2008). "Explicit wave-averaged primitive equations using a generalized Lagrangian mean." Ocean Modelling 20: 35-60.
Battjes, J. A. and J. P. F. M. Janssen (1978). "Energy loss and set-up due to breaking random waves." Coastal Engineering: 569-587.
Bennis, A.-C., F. Ardhuin and F. Dumas (2011). "On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation and adiabatic tests." Ocean Modelling 40: 260-272.
Bowen, A. J. (1969). "Rip currents: 1. theoretical investigations." Journal of Geophysical Research 74(23): 5467-5478.
Chiang, Y. C. (2009). "Numerical modeling for coastal morphodynamic evolution."
Dibajnia, M. and A. Watanabe (1998). "Transport rate under irregular sheet flow conditions." Coastal Engineering 35(3): 167-183.
Drake, T. G. and J. Calanto (2001). "Discrete particle model for sheet flow sediment transport in the nearshore." Journal of Geophysical Research 106(C9): 19859-19868.
Elgar, S. and R. T. Guza (1985). "Observations of bispectra of shoaling surface gravity waves." Journal of Fluid Mechanics 161: 425-448.
Fringer, O. B., M. Gerritsen and R. L. Street (2006). "An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator." Ocean Modelling 14(3-4): 139-173.
Groeneweg, J. and G. Klopman (1998). "Changes of the mean velocity profiles in the combined wave current motion described in a GLM formulation." Journal of Fluid Mechanics 370: 271-296.
Haas, K. A., I. A. Svendsen, M. C, Haller and Q. Zhao2 (2003a). "Quasi-three-dimensional modeling of rip current systems." JOURNAL OF GEOPHYSICAL RESEARCH 108(C7).
Haas, K. A., I. A. Svendsen, M. C. Haller and Q. Zhao (2003b). "Quasi-three-dimensional modeling of rip current systems." Journal of Geophysical Research 108.
Hsu, T.-J. and D. M. Hanes (2004). "Effects of wave shape on sheet flow sediment transport." Journal of Geophysical Research 109(C5).
Kamphuis, J. W. (2010). Introduction to coastal engineering and management, World Scientific.
Kundu, P. K. and I. M. Cohen (2004). Fluid mechanics, third edition, Elsevier Academic Press.
Kuroiwa, M., H. Noda and Y. Matsubara (1998). "Applicability of a quasi-three dimensional numerical model to nearshore currents." Coastal Engineering.
Longuet-Higgins, M. S. and R. W. Stewart (1962). "Radiation stress and mass transport in gravity waves, with application to surf beats." Journal of Fluid Mechanics 13(04): 481-504.
Longuet-Higgins, M. S. and R. W. Stewart (1964). "Radiation stress in water waves; a physical discuss, with application." Deep Sea Research 11.
Mellor, G. L. (2003). "The three-dimensional current and surface wave equations." Journal of Geophysical Research 33.
Mellor, G. L. (2008). "The depth-dependent current and wave interaction equations: a revision." Journal of Geophysical Research 38(3971.1).
Phillip, O. M. (1977). "The dynamics of the upper ocean." p336.
Sheng, Y. P. and T. Liu (2011). "Three-dimentional simulation of wave-induced circulation: comparison of three radiation stress formulation." Journal of Geophysical Research 116.
Silva, P. A. d., A. Temperville and F. S. Santos (2006). "Sand transport under combined current and wave conditions: a semi-unsteady, practical model." Coastal Engineering 53: 897-913.
Svendsen, I. A. (1984a). "Mass flux and undertown in a surf zone." Coastal Engineering 8.
Svendsen, I. A. (1984b). "Wave height and set-up in a surf zone." Coastal Engineering 8.
Svendsen, I. A. (2006). Introduction to nearshore hydrodynamics, World Scientific.
Svendsen, I. A., P. A. Madsen and J. B. Hansen (1978). "Wave characteristics in the surf zone." Coastal Engineering 1: 520-539.
Uchiyama, Y., J. C. McWilliams and J. M. Restrepo (2009). "Wave-current interaction in nearshore shear instability analyzed with a vortex force formalism." Journal of Geophysical Research 114(C6): 1978-2012.
Xia, H., Z. Xia and L. Zhu (2004). "Vertical variation in radiation stress and wave-induced current." Coastal Engineering 51(4): 309-321.
張培廉. (2013, 2013/06/29). "2011年臺灣地區溺水死亡統計報告 http://www.surflifesaving.org.tw/event2011report.html."
許晃雄, 吳宜昭, 周佳, 陳正達, 陳永明 and 盧孟明 (2011). 台灣氣候變遷科學報告. 「台灣氣候變遷推估與資訊平台建置計畫」計畫辦公室

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔