(3.230.154.160) 您好!臺灣時間:2021/05/07 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥儒
研究生(外文):Yen-Ju Chen
論文名稱:陣列式壓電能量擷取子之寬頻設計
論文名稱(外文):Design of Multiple Piezoelectric Energy Harvesters with Broadband Improvement
指導教授:舒貽忠
指導教授(外文):Yi-Chung Shu
口試委員:黃心豪黃育熙鍾添淦
口試委員(外文):Hsin-Haou HuangYu-Hsi HuangTien-Kan Chung
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:81
中文關鍵詞:並聯陣列式壓電振動能量擷取系統標準整流電路寬頻效果
外文關鍵詞:array of piezoelectric energy harvests connected in parallelstandard interfacebroadband improvement
相關次數:
  • 被引用被引用:3
  • 點閱點閱:146
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在壓電振動能量擷取領域中,使用之振動子會受限於共振頻率附近的輸出功率,但環境的振動變化範圍大且不穩定,因此,本論文希望透過陣列式設計,讓壓電能量擷取系統的共振頻率範圍增大,並探討陣列式系統的寬頻現象。
文中的實驗架構,透過將單一振動子模組化,讓陣列式的設計更具彈性,並以新的方法設置質量塊,以及穩定調整振動子之共振頻率,讓系統可以按照需求設定不同之頻率,已達目標之頻寬。在數值模擬方面,寬頻現象探討則以軟體分析在並聯陣列式設計下,設定每根振動子不同共振頻率,探討在何種情形下會有最佳頻寬效果。此外,透過大量數值模擬的結果,發現了其系統的最佳頻寬大小,與振動子之無因次力電耦合係數和所在共振頻率區間有關,因此提出了一套快速估算最佳頻寬大小的方法。
最後,現實情況中充滿限制,無法像軟體可以任意模擬各種情況,其中設計空間的限制和環境振源就是極大的挑戰。文中提供一套設計流程,將問題簡化為空間的幾何排列,確定可以放置的振動子總數後,再用軟體分析是否可以達到目標之輸出功率與頻寬大小,此方法可以利用軟體的模擬,準確預測結果,並節省時間與成本。


The thesis aims to develop an array of piezoelectric energy harvesters with broadband improvement. The bandwidth of a single oscillator is typically small, leading to significant power reduction at off-resonance. Instead, oscillators with slightly different resonant frequencies may enlarge the overall bandwidth. Besides, the optimal overall bandwidth is discussed here.
The thesis proposes two improvements. One is to design a module so that independent oscillators can be collected flexibly to become an array system. Second, a new design is proposed for adjusting the specific resonant frequency by rearranging the proof mass of each oscillator. In addition, a series of numerical simulations are carried out for the case of parallel connection of oscillators. The optimal wideband is simulated by adjusting the resonance of each oscillator. The result shows that the overall bandwidth of an array system is closely related to the dimensionless electromechanical coupling factor and the difference between the short and open circuit resonances. A design guideline for evaluation of optimal bandwidth is also proposed here.
Finally, the thesis discusses the restrictions imposed on the design of an array system. These restrictions include the dimensions of the device, the target power output and the bandwidth for maintaining the specific power output. The thesis provides a standard procedure by first determining the maximum number of oscillators that the space can accommodate. Second, numerical simulations are proposed for reaching the target output power and the overall bandwidth.


致謝 i
摘要 ii
Abstract iii
圖目錄 vii
表目錄 x
第一章 導論 1
1.1研究動機 1
1.2 文獻回顧 2
1.3 論文架構 6
第二章 壓電理論 7
2.1壓電效應(Piezoelectric Effect) 7
2.1.1 正壓電效應 7
2.1.2 逆壓電效應 8
2.2 線性壓電材料之本構方程式 9
2.3 壓電懸臂樑數學模型之建立 11
2.3 壓電懸臂樑之等效參數 15
2.4 並聯式陣列式壓電能量擷取系統 18
2.4.1 單一壓電振動子在標準電路下之理論解 18
2.4.2 並聯陣列式在標準電路下之理論解 19
2.5並聯陣列式壓電振動子之機構設計 22
2.5.1影響參數 22
2.5.2設計方法 23
第三章 陣列式壓電能量擷取系統之設計與分析 26
3.1 實驗儀器與架構 26
3.1.1 實驗架構 26
3.1.2 實驗儀器 28
3.2 實驗材料之參數 31
3.3 陣列式線性振動子之實驗結果 34
3.3.1 單一振動子輸出功率 35
3.3.2 4根振動子並聯陣列式設計: 38
3.3.3 8根振動子並聯陣列式設計: 44
3.4 寬頻現象分析 48
3.5寬頻設計下的頻率區間估算 54
3.6 有限體積下之設計方法 58
3.7 並聯式設計與串聯式設計比較 63
第四章 結論與未來展望 65
4.1 結論 65
4.2 未來展望 67
參考文獻 68
附錄一 73
附錄二 75
附錄三 80


[1] N. G. Elvin, A. A. Elvin, and M. Spector, “A self-powered mechanical strain energy sensor, ” Smart Materials and Structures, Vol.10, p. 293-299, 2001.
[2] A. Erturk, and D. J. Inman, “On mechanical modeling of cantilevered piezoelectric vibration energy harvesters, ” Journal of Intelligent Material Systems and Structures, Vol. 19, p. 1311-1325, 2008.
[3]L. Mateu and F. Moll, “Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts, ” Journal of Intelligent Material Systems and Structures, Vol. 16, p. 835-845, 2005.
[4]N. S. Shenck and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics, ” IEEE Micro, Vol. 21, p.30-42, 2001.
[5]H. A. Sodano, G. Park, D. J. Leo, and D. J. Inman, “Model of piezoelectric power harvesting beam, ” American Society of Mechanical Engineers, New York, Vol. 68, p. 345-354, 2003.
[6]S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics, ” Smart Materials and Structures, Vol. 13, p. 1131-1142, 2004.
[7]X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren and L. Liu, “A frequency adjustable vibration energy harvester, ” Proceedings of Power MEMS, p. 245-248, 2008.
[8]E. S. Leland and P. K. Wright, “Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload, ” Smart Materials and Structures, Vol. 15, No.5, p. 1413-1420, 2006.
[9]Y. T. Hu, H. Xue and H. P. Hu, “A piezoelectric power harvester with adjustable frequency through axial preloads, ” Smart Materials and Structures, Vol. 16, No.5, p. 1961-1966, 2007.
[10]A. Mathers, K. S. Moon and J. Yi, “A vibration-based PMN-PT energy harvester, ” IEEE Sensors Journal, Vol. 9, No. 7, p. 731-739, 2009.
[11]C. S. Lee, J. Joo, S. Han and S. K. Koh, “Multifunctional transducer using poly (vinylidene fluoride) active layer and highly conducting poly electrode: actuator and generator, ” Applied Physics Letters, Vol. 85, p. 1841-1843, 2004.
[12]Q. M. Wang, C. L. Sun and L. F. Qin, “Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) device, ” Journal of Intelligent Material Systems and Structures, Vol.21, p. 1279-1291, 2010.
[13]M. Zhu, E. Worthington, and J. Njuguna, “Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method, ” IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, Vol.56, p. 1309-1318, 2009.
[14]Y. C. Shu, I. C. Lien, “Analysis of power output for piezoelectric energy harvesting systems, ” Smart Materials and Structures, Vol.15, p. 1499-1512, 2006a.
[15]Y. C. Shu, I. C. Lien, “Efficiency of energy conversion for a piezoelectric power harvesting system, ” Journal of Micromechanics and Microengineering, Vol.16, p. 2429-2438, 2006b.
[16]J. R. Liang, and W. H. Liao, “Piezoelectric energy harvesting and dissipation on structural damping, ” Journal of Intelligent Material Systems and Structures, Vol.20, p. 515-527, 2009.
[17]J. R. Liang, and W. H. Liao, “Energy flow in piezoelectric energy harvesting systems, ” Smart Materials and Structures, Vol. 20: 015005 , 2011.
[18]J. M. Renno, M. F. Daqaq and D. J. Inman, “On the optimal energy harvesting from a vibration source, ” Journal of Sound and Vibration, Vol.320, p. 386-405, 2009.
[19]D. Guyomar, A. Badel, E. Lefeuvre and C. Richard, “Toward energy harvesting using active materials and conversion improvement by nonlinear processing, ” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.52, p. 584-595, 2005.
[20]Y. C. Shu and I. C. Lien, “An improved analysis of the SSHI interface in piezoelectric energy harvesting, ” Smart Materials and Structures, Vol. 16, p. 2253-2264, 2007.
[21]Y. C. Shu, I. C. Lien, “A comparison between the standard and SSHI interfaces used in piezoelectric power harvesting, ” Proc. SPIE: Active and Passive Smart Struct. Integr. Syst., Vol. 6526: 652509, 2007.
[22]Y. C. Shu, I. C. Lien, W. J. Wu and S. M. Shiu, “Comparisons between parallel-SSHI and series-SSHI interfaces adopted by piezoelectric energy harvesting systems, ” SPIE''s 16th International Symposium on Smart Structures and Materials, San Diego, California, 2009.
[23]S. Shahruz, “Design of mechanical band-pass filters with large frequency bands for energy scavenging, ” Mechatronics, Vol. 16, p. 523-531, 2006.
[24]S. Shahruz, “Design of mechanical band-pass filters for energy scavenging, ” Journal of Sound and Vibration, Vol. 292, p. 987-998, 2006.
[25]S. Shahruz, “Design of mechanical band-pass filters for energy scavenging: Multi-degree-of-freedom models, ” Journal of Vibration and Control, Vol. 14, p. 753-768, 2008.
[26]N. E. Dutoit and L. W. Brian, “Performance of microfabricated piezoelectric vibration energy harvesters, ” Integrated Ferroelectrics, Vol. 83, p. 13-32, 2006.
[27]H. Xue, Y. Hu, and Q. Wang, “Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies, ” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 55, p. 2104-2108, 2008.
[28]I. C. Lien and Y. C. Shu, “Array of piezoelectric energy harvesting by equivalent impedance approach, ” Smart Materials and Structures, Vol. 21: 082001, 2012.
[29] I. C. Lien and Y. C. Shu, “Array of piezoelectric energy harvesters,” Proc. Active and Passive Smart Structures and Integrated Systems, ” Proc. SPIE Vol. 7977: 79770K, 2011.
[30]M. Pozzi, and M. Zhu, “Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation, ” Smart Materials and Structures, Vol.20: 055007, 2011.
[31]M. Pozzi, M. S. H. Aung, M. Zhu, R. K. Jones and J. Y. Goulermas, “The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load, ” Smart Materials and Structures, Vol.21: 075023, 2012.
[32]M. Ferrari, V. Ferrai, D. Marioli and A. Taroni, “Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems, ” Sensors and Actuators A, Vol.142, p. 329-335, 2008.
[33]J. Q. Liu, H. B. Fang, Z. Y. Xu, X. H. Mao, X. C. Shen, D. Chen, H. Liao and B. C. Cai, “A MEMS-based piezoelectric power generator array for vibration energy harvesting, ” Microelectronic Journal, Vol.39, p. 802-806, 2008.
[34] S. C. Liu and W. J. Wu “Piezoelectric micro energy harvesters based on stainless-steel substrates,” Smart Materials and Structures, Vol.22: 045016, 2013.
[35]徐士銘, “並聯與串聯電感同步切換開關介面電路應用於壓電振動能量擷取之研究, ” 台灣大學應用力學所研究所碩士論文, 2010.
[36]陳冠廷, “以有限元素法探討壓電振動能量擷取系統之機電行為, ”台灣大學應用力學所研究所碩士論文, 2011.
[37]連益慶, “陣列式壓電能量擷取系統在多種介面電路下之動態特性分析, ”台灣大學應用力學所研究所博士論文, 2012.
[38]吳宏仁, “以有限元素法模擬並聯陣列式壓電振動子之機電行為, ” 台灣大學應用力學所研究所碩士論文, 2012.
[39] 簡偉勝,“應用混合法量測壓電材料常數並探討其動態特性與溫度效應,” 台灣大學機械工程學研究所碩士論文, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔