[1]Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72.
[2]Bandyopadhyay, P. 2005 Trends in biorobotic autonomous undersea vehicles, IEEE Journal of Oceanic Engineering 30(1), 109-139.
[3]Beal, D. N., Hover, F. S., Triantafyllou, M. S., Liao, J. C., & Lauder, G. V. 2006 Passive propulsion in vortex wakes, J. Fluid Mech. 549, 385-402.
[4]Biesheuvel, A. & Hagmeijer, R. 2006 On the force on a body moving in fluid. Fluid Dyn. Res. 38, 716–742.
[5]Blondeaux, P. O., Fornarelli, F., Guglielmini, L., Triantafyllou, M. S. & Verzicco, M. 2005 Numerical experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17, 113601.
[6]Borazjani, I. & Sotiropoulos, F. 2008 Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Expl Biol. 211, 1541–1558.
[7]Buchholz, J. H. J. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331–365.
[8]Burgers, J. M. 1920 On the resistance of fluids and vortex motion. Proc. Kon. Akad. Westenschappente Amsterdam. 1, 774–782.
[9]Chang, C. C. 1992 Potential flow and forces for incompressible viscous flow. Proc. R. Soc. A-Math. Phys. Eng. Sci. 437, 517–525.
[10]Chang, C. C. & Lei, S. Y. 1996 An analysis of aerodynamic forces on a delta wing. J. Fluid Mech. 316, 173-196.
[11]Chang, C. C. & Lei, S. Y. 1996 On the sources of aerodynamic forces: steady flow around a cylinder or a sphere. Proc. R. Soc. Lond. A 452, 2369-2395.
[12]Chang, C. C., Yang, S. H. & Chu, C. C. 2008 A many-body force decomposition with applications to flow about bluff bodies. J. Fluid Mech. 600, 95–104.
[13]Chu, C. C., Chang, C. C. et al. 1996 Suction effect on an impulsively started circular cylinder: vortex structure and drag reduction. Phys. Fluids. 11, 2995-3007.
[14]Dickinson, M. H., Farley, C. T., Full, R. J., Koehl. M. A. R., Kram, R. & Lehman, S. 2000 How Animals Move: An Integrative View. Science 288, 100.
[15]Dong, H., Mital, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309–343.
[16]Drucker, E. G. & Lauder, G. V. 1999 Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using particle image velocimetry. J. Fluid Mech. 202, 2392–2412.
[17]von Ellenrieder, K. D., Parker, K. & Soria, J. 2003 Flow structures behind a heaving and pitching finite-span wing. J. Fluid Mech. 490, 129–138.
[18]Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140.
[19]Glauert, H. 1983 The elements of aerofoil and airscrew theory. Cambridge University Press.
[20]Godoy-Diana, R., Aider, J. L. & Wesfreid, J. E. 2008 Transitions in the wake of a flapping foil. Phys. Rev. E 77, 016308.
[21]Godoy-Diana, R., Aider, J. L. & Wesfreid, J. E. 2009 A model for the symmetry breaking of the reverse B’enard–von K’arm’an vortex street produced by a flapping foil. J. Fluid Mech. 622, 23–32.
[22]Gopalkrishnan, R., Triantafyllou, G. S., Triantafyllou, M. S., & Barredt, D. 1994 Active vorticity control in a shear flow using a flapping foil. J. Fluid Mech., 274, 1-22.
[23]Green, M. A. & Smits, A. J. 2008 Effects of three-dimensionality on thrust production by a pitching panel. J. Fluid Mech. 615, 211–220.
[24]Guglielmini, L. & Blondeaux, P. 2004 Propulsive efficiency of oscillating foils. Euro. J. Fluid Mech. 23, 255–278.
[25]Howe, M. S. 1995 On the force and moment on a body in an incompressible fluid, with application to rigid bodies and bubbles at high and low Reynolds numbers. Quart. J. Mech. Appl. Math. 48, 401–426.
[26]Hsieh, C. T., Chang, C. C. and Chu, C. C. Revisiting the aerodynamics of hovering flight using simple models, 2009, J. Fluid Mech. 623, 121-148.
[27]Hsieh, C. T., Kung, C. F., Chang, C. C. and Chu, C. C. 2010 Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition. J. Fluid Mech. 663, 233-252.
[28]Hultmark, M., Leftwich, M. & Smits, A. J. 2007 Flowfield measurements in the wake of a robotic lamprey. Exp. Fluids 43, 683–690.
[29]Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating aerofoil. AIAA Journal 27, 1200–1205.
[30]Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon.
[31]Lentink, D., Muijres, F. T., Donker-Duyvis, F. J. & van Leeuwen, J. L. 2008 Vortex wake interactions of a flapping foil that models animal swimming and flight. J. Expl Biol. 211, 267–273.
[32]Lewin, G. C. & Haj-Hariri, H. 2003 Modelling thrust generation of a two-dimensional heaving aerofoil in a viscous flow. J. Fluid Mech. 492, 339–362.
[33]Li, G. J. & Lu, X. Y. 2012 Force and power of flapping plates in a fluid, J. Fluid Mech. 712, 598-613.
[34]Liao, J. C., Beal, D. V. , Lauder, G. V. & Triantafyllou, M. S., 2003 The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. J. Expl Biol. 206(6), 1059.
[35]Licht, S., Hover, F. & Triantafyllou, M. 2004 Design of a flapping foil underwater vehicle. 13th International Underwater Technology Symposium.
[36]Lighthill, M. J. 1986 Fundamentals concerning wave loading on offshore structures. J. Fluid Mech. 173, 667–681.
[37]Lighthill, M. J. 1969 Hydromechanics of aquatic animal propulsion, Annual Review of Fluid Mechanics. 1(1), 413-446.
[38]Lighthill, M. J. 1971 Large-amplitude elongated-body theory of fish locomotion. Proceedings of the Royal Society of London, Series B, Biological Sciences, 179(1055), 125-138.
[39]Lindsey, C. C. 1978 Form, function and locomotory habits in fish, Fish Physiology, VII Locomotion, W. S. Hoar and D. J. Randall, Eds.New York: Academic, 1–100.
[40]Milano, M. & Gharib, M. 2005 Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403–409.
[41]Webb, P. W. 1984 Form and function in fish swimming, Sci. Amer. 251, 58–68.
[42]Schnipper, T., Andersen, A. & Bohr, T. 2009 Vortex wakes of a flapping foil. J. Fluid Mech. 633, 411–423.
[43]Schouveilera, L., Hover, F. S. and Triantafyllou, M. S. 2005 Performance of flapping foil propulsion, J. Fluids Struct. 20, 949–959.
[44]Sfakiotakis, M., Lane, D. & Davies, J. 1999 Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 24(2), 237-252.
[45]Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 435, 707–711.
[46]Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205–224.
[47]Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids 3 (12), 2835–2837.
[48]Tytell, E. D. & Lauder, G. V. 2004 The hydrodynamics of eel swimming. Part I. Wake structure. J. Expl Biol. 207, 1825–1841.
[49]Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355–381.
[50]Wu, T. 1960 Swimming of a waving plate. J. Fluid Mech. 10, 321-344.
[51]Wu, J. C. 1981 Theory for aerodynamic force and moment in viscous flow. AIAA J. 19, 432–441.
[52]蕭穎謙 1993 環繞機翼之二維渦漩流的研究,國立台灣大學應用力學研究所博士論文。[53]蘇正瑜 1998 三角翼外流場之力源分析,國立台灣大學應用力學研究所博士論文。[54]丁上杰 2009 魚類操控式游動之流體動力與生物物理學研究,清華大學動力機械工程學系博士論文。