(3.236.222.124) 您好!臺灣時間:2021/05/13 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳炯文
研究生(外文):Jiung-Wen Chen
論文名稱:奈米矽片銀改質濾材對生物氣膠控制效率之研究
論文名稱(外文):Control Efficiency of Silver Nanoparticles/Clay Modified Filter for Bioaerosols
指導教授:李慧梅李慧梅引用關係
指導教授(外文):Whei-May Lee
口試委員:張靜文黃小林楊心豪
口試日期:2013-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:78
中文關鍵詞:室內空氣品質空氣清淨技術奈米銀生物氣膠抗菌過濾
外文關鍵詞:indoor air qualityair cleaning technologysilver nanoparticlesbioaerosolsantimicrobial activityfiltration
相關次數:
  • 被引用被引用:1
  • 點閱點閱:243
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物氣膠會對人體健康造成不良的影響,目前控制室內生物氣膠的方法之一為使用奈米銀濾材,然而奈米銀粒徑非常微小(1~100 nm),容易進入並累積於細胞中產生細胞毒性,因此本研究選用細胞毒性較低的奈米矽片銀作為抗菌劑固定於濾材上,形成「奈米矽片銀抗菌濾材」,進以去除生物氣膠活性。測試奈米矽片銀的抗菌效果,E. coli與C. famata在0.08 mg/L濃度下的20分鐘之活性為初始濃度的7.9±0.2%與37.1±7.1%,顯示奈米矽片銀本身具有良好的殺菌效果。過濾效率測試顯示在RH=30%時,濾材改質前後對E. coli的40分鐘之平均過濾效率由18.9%上升至39.4%,對C. famata則由88.8%下降至77.7%;RH=70%時,改質前後對E. coli過濾效率由50.18%由下降至43.89%,C. famata則由92.0%下降至84.4%,顯示大部分情況下改質程序處理過的濾材對生物氣膠的過濾效率會下降,且相對濕度較高時有較高的過濾效率。測試濾材上微生物隨時間變化的存活率,發現在RH=30%與70%時,C. famata在未改質濾材上經過1,000分鐘後分別為103.2±15.1%與83.1±5.1%,在改質濾材上經過1,000分鐘後分別為50.8±23.6%與23.9±12.1%,顯示奈米矽片銀改質濾材具有抑菌效果,且高相對濕度的效果較好。本研究結果顯示,將奈米矽片銀與空氣過濾濾材結合可去除附著於濾材上的微生物之活性,是具有發展潛力之空氣清淨技術。

It has been known that bioaerosols have adverse effects on human health. Currently one of the practical ways to control indoor bioaerosols is to apply silver nanoparticles (AgNPs)-modified filter to air purifier. However, the sizes of AgNPs are extremely small (1~100 nm) and thus AgNPs will penetrate cell membranes and accumulate in cells, which may cause cytotoxicity. The objective of this study is to develop a brand-new air filter with high antimicrobial activity and low cytotoxicity. To do this, high surface clay-supported silver nanohybrids (AgNPs/clay) were immobilized on filter as an antimicrobial agent to inactivate microorganisms captured. Due to the intrinsic geometric characteristic of clay, AgNPs do not penetrate into cells. The antimicrobial activities of AgNPs/Clay were examined. The relative viability of E. coli and C. famata was 7.9±0.2% and 37.1±7.1%, respectively, after microorgamisms contacted with AgNPs/Clay solution at a concentration of 0.08 mg/L within 20 min. The filtration efficiencies of both untreated and treated filter were measured. When RH was at 30%, 40-minute average filtration efficiency was from 18.9% to 39.4% for E. coli and from 88.8% to 77.7% for C. famata after filters underwent modification process. When RH was at 70%, 40-minute average filtration efficiency was from 50.18% to 43.89% for E. coli and from 92.0% to 84.4% for C. famata after filters underwent modification process. These results not only indicate that in most cases treated filter possessed lower filtration efficiency compared with untreated filter, but show that filters performed better under high relative humidity. The viability of microorganisms on filter varies with time were also examined. The viability of C. famata after 1,000 min was 103.2±15.1% and 83.1±5.1% on untreated filter when RH was at 30% and 70%, respectively, while it was 50.8±23.6% and 23.9±12.1% on treated filter. These results indicate that AgNPs/clay-modified filter can inhibit the growth of microorganisms. Besides, treated filter possesses higher antimicrobial activity under high relative humidity. The findings of this study suggest that AgNPs/clay-modified air filter can inactivate microorganisms attached on it and can therefore be a promising air cleaning technology.

中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
符號說明 x
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究內容與方法 2
第二章 文獻回顧 3
2-1 生物氣膠 3
2-1-1 生物氣膠種類與特性 3
2-1-2 生物氣膠來源 4
2-1-3 生物氣膠對人類之影響 5
2-1-4 生物氣膠採樣技術 7
2-2 生物氣膠之室內空氣品質標準 8
2-3 室內空氣清淨技術 12
2-3-1 通風換氣 12
2-3-2 臭氧氧化 13
2-3-3 空氣負離子 13
2-3-4 紫外線照射 14
2-3-5 光催化氧化 15
2-3-6 過濾 16
2-4 奈米銀與奈米矽片銀 19
2-4-1 奈米銀抗菌機制 19
2-4-2 奈米銀之生物毒性 21
2-4-3奈米矽片銀特性 22
第三章 實驗設備與方法 24
3-1 實驗系統 24
3-1-1 空氣供應單元 24
3-1-2 生物氣膠產生單元 24
3-1-3 相對濕度控制單元 24
3-1-4 生物氣膠過濾單元 26
3-1-5 生物氣膠採樣單元 26
3-2 實驗菌種培養與懸浮液製備 28
3-2-1 大腸桿菌培養與懸浮液製備 29
3-2-2 傳說念珠菌培養與懸浮液製備 29
3-2-3 生物氣膠檢測方法 30
3-3 實驗流程 32
3-3-1 奈米矽片銀濾材製備 32
3-3-2 濾材中銀之定量分析 33
3-3-3 奈米矽片銀毒性測試 34
3-3-4 濾材SEM觀察 34
3-3-5 濾材過濾效率測試 34
3-3-6 濾材上之微生物存活率測試 36
第四章 結果與討論 39
4-1 奈米矽片銀毒性測試 39
4-2 奈米矽片銀改質濾材SEM觀察 42
4-3 過濾效率測試 46
4-4 微生物存活率測試 51
第五章 結論與建議 59
5-1 結論 59
5-2 建議 60
參考文獻 61
附錄 口試委員建議 74

1. Adhikari, A., J. Gupta, J. R. Wilkins, R. L. Olds, R. Indugula, K. J. Cho, C. L. Li and M. Yermakov, "Airborne Microorganisms, Endotoxin, and (1 -> 3)-beta-D-Glucan Exposure in Greenhouses and Assessment of Respiratory Symptoms Among Workers," Annals of Occupational Hygiene, 55(3), 272-285 (2011).
2. Afshari, A., H. R. Anderson, A. Cohen, E. de Oliveira Fernandes, J. Douwes, R. Gorny, M.-R. Hirvonen, J. Jaakkola, S. Kirchner and J. Kurnitski, "WHO guidelines for indoor air quality: dampness and mould," World Health Organization Regional Office for Europe, Copenhagen, Denmark (2009).
3. AFSSET, "Indoor Air Quality Guideline Value Proposals," Agency for Health and Safety in the Environment and in the Workplace, France (2006).
4. Agranovski, I., Aerosols: Science and Technology, Wiley-VCH, Weinheim, Germany, (2010).
5. AshaRani, P. V., G. L. K. Mun, M. P. Hande and S. Valiyaveettil, "Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells," Acs Nano, 3(2), 279-290 (2009).
6. Asharani, P. V., Y. L. Wu, Z. Y. Gong and S. Valiyaveettil, "Toxicity of silver nanoparticles in zebrafish models," Nanotechnology, 19(25), (2008).
7. Aydogdu, H., A. Asan and M. T. Otkun, "Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors," Environmental Monitoring and Assessment, 164(1-4), 53-66 (2010).
8. Batterman, S. A. and H. Burge, "HVAC systems as emission sources affecting indoor air quality: a critical review," HVAC&R Research, 1(1), 61-78 (1995).
9. Becher, R., J. Hongslo and E. Dybing, "Guidelines for indoor air in Norway: A practical approach," Pollution atmospherique, 42(166), 245-246 (2000).
10. Bolashikov, Z. D. and A. K. Melikov, "Methods for air cleaning and protection of building occupants from airborne pathogens," Building and Environment, 44(7), 1378-1385 (2009).
11. Bramley, T. J., D. Lerner and M. Sarnes, "Productivity losses related to the common cold," Journal of Occupational and Environmental Medicine, 44(9), 822-829 (2002).
12. Braydich-Stolle, L., S. Hussain, J. J. Schlager and M. C. Hofmann, "In vitro cytotoxicity of nanoparticles in mammalian germline stem cells," Toxicological Sciences, 88(2), 412-419 (2005).
13. Burton, N. C., A. Adhikari, S. A. Grinshpun, R. Hornung and T. Reponen, "The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant," Journal of Environmental Monitoring, 7(5), 475-480 (2005).
14. Chen, F. N., X. D. Yang, H. K. C. Mak and D. W. T. Chan, "Photocatalytic oxidation for antimicrobial control in built environment: A brief literature overview," Building and Environment, 45(8), 1747-1754 (2010).
15. Chiao, S. H., S. H. Lin, C. I. Shen, J. W. Liao, I. J. Bau, J. C. Wei, L. P. Tseng, S. H. Hsu, P. S. Lai, S. Z. Lin, J. J. Lin and H. L. Su, "Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling Salmonella infection," International Journal of Nanomedicine, 7(2421-2432 (2012).
16. Christoforou, C. S., L. G. Salmon and G. R. Cass, "Passive filtration of airborne particles from buildings ventilated by natural convection: Design procedures and a case study at the Buddhist cave temples at Yungang, China," Aerosol Science and Technology, 30(6), 530-544 (1999).
17. Chu, C. Y., F. C. Peng, Y. F. Chiu, H. C. Lee, C. W. Chen, J. C. Wei and J. J. Lin, "Nanohybrids of Silver Particles Immobilized on Silicate Platelet for Infected Wound Healing," Plos One, 7(6), (2012).
18. COMEAP, "Guidance on the Effects on Health of Indoor Air Pollutants," Department of Health, United Kingdom (2004).
19. Crook, B. and N. C. Burton, "Indoor moulds, sick building syndrome and building related illness," Fungal Biology Reviews, 24(3), 106-113 (2010).
20. Dong, R. X., C. C. Chou and J. J. Lin, "Synthesis of immobilized silver nanoparticles on ionic silicate clay and observed low-temperature melting," Journal of Materials Chemistry, 19(15), 2184-2188 (2009).
21. Fabrega, J., S. R. Fawcett, J. C. Renshaw and J. R. Lead, "Silver Nanoparticle Impact on Bacterial Growth: Effect of pH, Concentration, and Organic Matter," Environmental Science & Technology, 43(19), 7285-7290 (2009).
22. Fan, L., J. Song, P. D. Hildebrand and C. F. Forney, "Interaction of ozone and negative air ions to control micro-organisms," Journal of Applied Microbiology, 93(1), 144-148 (2002).
23. Fletcher, L. A., L. F. Gaunt, C. B. Beggs, S. J. Shepherd, P. A. Sleigh, C. J. Noakes and K. G. Kerr, "Bactericidal action of positive and negative ions in air," Bmc Microbiology, 7((2007).
24. Friedlander, S. K., "Theory of Aerosol Filtration," Industrial and Engineering Chemistry, 50(8), 1161-1164 (1958).
25. Green, R., A. Simpson, A. Custovic, B. Faragher, M. Chapman and A. Woodcock, "The effect of air filtration on airborne dog allergen," Allergy, 54(5), 484-488 (1999).
26. Guan, T. J. and M. S. Yao, "Use of carbon nanotube filter in removing bioaerosols," Journal of Aerosol Science, 41(6), 611-620 (2010).
27. Guzel-Seydim, Z. B., A. K. Greene and A. C. Seydim, "Use of ozone in the food industry," Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology, 37(4), 453-460 (2004).
28. Hameed, A. A. A., M. I. Khoder, Y. H. Ibrahim, Y. Saeed, M. E. Osman and S. Ghanem, "Study on some factors affecting survivability of airborne fungi," Science of the Total Environment, 414(696-700 (2012).
29. Hameed, A. A. A. and M. I. Khodr, "Suspended particulates and bioaerosols emitted from an agricultural non-point source," Journal of Environmental Monitoring, 3(2), 206-209 (2001).
30. HealthCanada, "Residential Indoor Air Quality Guidelines," Health Canada, (2012) Retrieved March 18, 2013, from http://www.hc-sc.gc.ca/ewh-semt/air/in/res-in/index-eng.php
31. Hellgren, J., A. Cervin, S. Nordling, A. Bergman and L. O. Cardell, "Allergic rhinitis and the common cold - high cost to society," Allergy, 65(6), 776-783 (2010).
32. HKEPD, "A Guide on Indoor Air Quality Certification Scheme for Offices and Public Places," Hong Kong Environmental Protection Department, Hong Kong (2003) Retrieved March 18, 2013, from http://www.iaq.gov.hk/cert/doc/CertGuide-eng.pdf
33. Hsu, Y. C., P. Y. Kung, T. N. Wu and Y. H. Shen, "Characterization of Indoor-Air Bioaerosols in Southern Taiwan," Aerosol and Air Quality Research, 12(4), 651-661 (2012).
34. Huang, C. Y., C. C. Lee, F. C. Li, Y. P. Ma and H. J. J. Su, "The seasonal distribution of bioaerosols in municipal landfill sites: a 3-yr study," Atmospheric Environment, 36(27), 4385-4395 (2002).
35. Huang, H. L., M. G. Lee and J. H. Tai, "Controlling Indoor Bioaerosols Using a Hybrid System of Ozone and Catalysts," Aerosol and Air Quality Research, 12(1), 73-82 (2012).
36. Husman, T. M., "The Health Protection Act, national guidelines for indoor air quality and development of the national indoor air programs in Finland," Environmental Health Perspectives, 107(515-517 (1999).
37. Hussein, T., V. Norros, J. Hakala, T. Petaja, P. P. Aalto, U. Rannik, T. Vesala and O. Ovaskainen, "Species traits and inertial deposition of fungal spores," Journal of Aerosol Science, 61(81-98 (2013).
38. Hwang, S. H., D. U. Park, K. C. Ha, H. W. Cho and C. S. Yoon, "Airborne bacteria concentrations and related factors at university laboratories, hospital diagnostic laboratories and a biowaste site," Journal of Clinical Pathology, 64(3), 261-264 (2011).
39. Iossifova, Y. Y., T. Reponen, P. H. Ryan, L. Levin, D. I. Bernstein, J. E. Lockey, G. K. K. Hershey, M. Villareal and G. LeMasters, "Mold exposure during infancy as a predictor of potential asthma development," Annals of Allergy Asthma & Immunology, 102(2), 131-137 (2009).
40. Jaakkola, J. J. K., B. F. Hwang and M. S. Jaakkola, "Home Dampness and Molds as Determinants of Allergic Rhinitis in Childhood: A 6-Year, Population-based Cohort Study," American Journal of Epidemiology, 172(4), 451-459 (2010).
41. Jo, W. K. and J. H. Kang, "Workplace exposure to bioaerosols in pet shops, pet clinics, and flower gardens," Chemosphere, 65(10), 1755-1761 (2006).
42. Jung, J. H., G. B. Hwang, S. Y. Park, J. E. Lee, C. W. Nho, B. U. Lee and G. N. Bae, "Antimicrobial Air Filtration Using Airborne Sophora Flavescens Natural-Product Nanoparticles," Aerosol Science and Technology, 45(12), 1510-1518 (2011).
43. Jyoti, K. K. and A. B. Pandit, "Ozone and cavitation for water disinfection," Biochemical Engineering Journal, 18(1), 9-19 (2004).
44. Kawabata, N. and S. Kawato, "Removal of airborne bacteria by filtration using a composite microporous membrane made of a pyridinium-type polymer showing strong affinity with microbial cells," Epidemiology and Infection, 121(2), 349-356 (1998).
45. Kawata, K., M. Osawa and S. Okabe, "In Vitro Toxicity of Silver Nanoparticles at Noncytotoxic Doses to HepG2 Human Hepatoma Cells," Environmental Science & Technology, 43(15), 6046-6051 (2009).
46. Kay, J. K. G., G. E. Keller and J. F. Miller, Indoor Air Pollution: Radon, Bioaerosols & VOCs, CRC PressI Llc, (1991).
47. Khadre, M. A., A. E. Yousef and J. G. Kim, "Microbiological aspects of ozone applications in food: A review," Journal of Food Science, 66(9), 1242-1252 (2001).
48. Khajavi, R., M. M. S. Bahadoran, A. Bahador and A. Khosravi, "Removal of microbes and air pollutants passing through nonwoven polypropylene filters by activated carbon and nanosilver colloidal layers," Journal of Industrial Textiles, 42(3), 219-230 (2013).
49. Kim, J. S., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong and M. H. Cho, "Antimicrobial effects of silver nanoparticles," Nanomedicine-Nanotechnology Biology and Medicine, 3(1), 95-101 (2007).
50. Kim, K. Y., H. T. Kim, D. Kim, J. Nakajima and T. Higuchi, "Distribution characteristics of airborne bacteria and fungi in the feedstuff-manufacturing factories," Journal of Hazardous Materials, 169(1-3), 1054-1060 (2009).
51. Klanova, K. and A. Lajcikova, "Use of ozone to reduce bacteria and moulds in the air and on surfaces," Indoor and Built Environment, 15(1), 81-84 (2006).
52. Ko, G., M. W. First and H. A. Burge, "The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms," Environmental Health Perspectives, 110(1), 95-101 (2002).
53. KoreanMOE, "Indoor Air Quality Control in Public Use Facilities, etc, Act," Ministry of Environment, South Korea (2003) Retrieved from http://eng.me.go.kr/content.do?method=moveContent&menuCode=pol_hnc_liv_ind_contents
54. Kowalski, W. J., W. P. Bahnfleth, B. A. Striebig and T. S. Whittam, "Demonstration of a hermetic airborne ozone disinfection system: Studies on E-coli," Aiha Journal, 64(2), 222-227 (2003).
55. Kujundzic, E., M. Hernandez and S. L. Miller, "Ultraviolet germicidal irradiation inactivation of airborne fungal spores and bacteria in upper-room air and HVAC in-duct configurations," Journal of Environmental Engineering and Science, 6(1), 1-9 (2007).
56. Kulkarni, P., P. A. Baron and K. Willeke, Aerosol measurement: principles, techniques, and applications, John Wiley & Sons, Hoboken, NJ, (2011).
57. Lee, H. J. and S. H. Jeong, "Bacteriostasis of nanosized colloidal silver on polyester nonwovens," Textile Research Journal, 74(5), 442-447 (2004).
58. Lee, J. S., S. Hwang and S. Kim, "Air filter having antimicrobial property," US 7,942,957 B2, Washington, DC: U.S. Patent and Trademark Office (2011).
59. Li, C. S., C. C. Tseng, H. H. Lai and C. W. Chang, "Ultraviolet germicidal irradiation and titanium dioxide photocatalyst for controlling Legionella pneumophila," Aerosol Science and Technology, 37(12), 961-966 (2003).
60. Li, P. R., J. C. Wei, Y. F. Chiu, H. L. Su, F. C. Peng and J. J. Lin, "Evaluation on Cytotoxicity and Genotoxicity of the Exfoliated Silicate Nanoclay," Acs Applied Materials & Interfaces, 2(6), 1608-1613 (2010).
61. Li, W. R., X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang and Y. B. Chen, "Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli," Applied Microbiology and Biotechnology, 85(4), 1115-1122 (2010).
62. Lin, X. J., K. Willeke, V. Ulevicius and S. A. Grinshpun, "Effect of sampling time on the collection efficiency of all-glass impingers," American Industrial Hygiene Association Journal, 58(7), 480-488 (1997).
63. Liu, K. Y., Z. B. Wen, N. Li, W. H. Yang, J. Wang, L. F. Hu, X. K. Dong, J. C. Lu and J. S. Li, "Impact of Relative Humidity and Collection Media on Mycobacteriophage D29 Aerosol," Applied and Environmental Microbiology, 78(5), 1466-1472 (2012).
64. Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu and C. M. Che, "Silver nanoparticles: partial oxidation and antibacterial activities," Journal of Biological Inorganic Chemistry, 12(4), 527-534 (2007).
65. MatthiasMaser, S. and R. Jaenicke, "The size distribution of primary biological aerosol particles with radii >0.2 mu m in an urban rural influenced region," Atmospheric Research, 39(4), 279-286 (1995).
66. Miller, S. L. and J. M. Macher, "Evaluation of a methodology for quantifying the effect of room air ultraviolet germicidal irradiation on airborne bacteria," Aerosol Science and Technology, 33(3), 274-295 (2000).
67. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez and M. J. Yacaman, "The bactericidal effect of silver nanoparticles," Nanotechnology, 16(10), 2346-2353 (2005).
68. Mudarri, D. and W. J. Fisk, "Public health and economic impact of dampness and mold," Indoor Air, 17(3), 226-235 (2007).
69. Myatt, T. A., M. H. Kaufman, J. G. Allen, D. L. MacIntosh, M. P. Fabian and J. J. McDevitt, "Modeling the airborne survival of influenza virus in a residential setting: the impacts of home humidification," Environmental Health, 9((2010).
70. Nantka, M. B., "Indoor conditions in silesian buildings with natural ventilation," Indoor and Built Environment, 15(6), 571-582 (2006).
71. Nathanson, T., "Indoor Air Quality in Office Buildings: A Technical Guide," Minister of National Health and Welfare, 93-EHD-166, Canada (1995).
72. Nikaeen, M., M. Hatamzadeh, A. Hasanzadeh, E. Sahami and I. Joodan, "Bioaerosol emissions arising during application of municipal solid-waste compost," Aerobiologia, 25(1), 1-6 (2009).
73. Nunes, Z. G., A. S. Martins, A. L. F. Altoe, M. M. Nishikawa, M. O. Leite, P. F. Aguiar and S. E. L. Fracalanzza, "Indoor air microbiological evaluation of offices, hospitals, industries, and shopping centers," Memorias Do Instituto Oswaldo Cruz, 100(4), 351-357 (2005).
74. Oppliger, A., S. Rusca, N. Charriere, T. V. Duc and P. O. Droz, "Assessment of bioaerosols and inhalable dust exposure in Swiss sawmills," Annals of Occupational Hygiene, 49(5), 385-391 (2005).
75. Pal, A., S. O. Pehkonen, L. E. Yu and M. B. Ray, "Photocatalytic Inactivation of Airborne Bacteria in a Continuous-Flow Reactor," Industrial & Engineering Chemistry Research, 47(20), 7580-7585 (2008).
76. Panacek, A., M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zboril and L. Kvitek, "Antifungal activity of silver nanoparticles against Candida spp.," Biomaterials, 30(31), 6333-6340 (2009).
77. Pyankov, O. V., I. E. Agranovski, R. Huang and B. J. Mullins, "Removal of biological aerosols by oil coated filters," Clean-Soil Air Water, 36(7), 609-614 (2008).
78. Qian, H., Y. G. Li, W. H. Seto, P. Ching, W. H. Ching and H. Q. Sun, "Natural ventilation for reducing airborne infection in hospitals," Building and Environment, 45(3), 559-565 (2010).
79. Reponen, T., "Aerodynamic Diameters and Respiratory Deposition Estimates of Viable Fungal Particles in Mold Problem Dwellings," Aerosol Science and Technology, 22(1), 11-23 (1995).
80. Rogers, J. V., C. V. Parkinson, Y. W. Choi, J. L. Speshock and S. M. Hussain, "A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation," Nanoscale Research Letters, 3(4), 129-133 (2008).
81. Ruzer, L. S. and N. H. Harley, Aerosols handbook: measurement, dosimetry, and health effects, CRC press, Boca Raton, FL, (2005).
82. Saijo, Y., A. Kanazawa, A. Araki, K. Morimoto, K. Nakayama, T. Takigawa, M. Tanaka, E. Shibata, T. Yoshimura, H. Chikara and R. Kishi, "Relationships between mite allergen levels, mold concentrations, and sick building syndrome symptoms in newly built dwellings in Japan," Indoor Air, 21(3), 253-263 (2011).
83. Sanchez-Monedero, M. A., M. I. Aguilar, R. Fenoll and A. Roig, "Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants," Water Research, 42(14), 3739-3744 (2008).
84. Seo, K. H., B. W. Mitchell, P. S. Holt and R. K. Gast, "Bactericidal effects of negative air ions on airborne and surface Salmonella enteritidis from an artificially generated aerosol," Journal of Food Protection, 64(1), 113-116 (2001).
85. SEWPaC, "Indoor Air," Department of Sustainability, Environment, Water, Population and Communities, Australia (2013) Retrieved April 17, 2013, from http://www.environment.gov.au/atmosphere/airquality/indoorair/index.html
86. SingaporeENV, Guidelines for Good Indoor Air Quality in Office Premises, 1st ed, Ministry of the Environment, Singapore, (1996).
87. Sotiriou, G. A. and S. E. Pratsinis, "Antibacterial Activity of Nanosilver Ions and Particles," Environmental Science & Technology, 44(14), 5649-5654 (2010).
88. Straka, R. P. and J. L. Stokes, "Rapid Destruction of Bacteria in Commonly Used Diluents and Its Elimination," Applied Microbiology, 5(1), 21-25 (1957).
89. Su, H. L., C. C. Chou, D. J. Hung, S. H. Lin, I. C. Pao, J. H. Lin, F. L. Huang, R. X. Dong and J. J. Lin, "The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay," Biomaterials, 30(30), 5979-5987 (2009).
90. Su, H. L., S. H. Lin, J. C. Wei, I. C. Pao, S. H. Chiao, C. C. Huang, S. Z. Lin and J. J. Lin, "Novel Nanohybrids of Silver Particles on Clay Platelets for Inhibiting Silver-Resistant Bacteria," Plos One, 6(6), (2011).
91. Tolvanen, O., Effects of waste treatment technique and quality of waste on bioaerosols in Finnish waste treatment plants, University of Jyvaskyla, Finland, (2004).
92. Tyagi, A. K. and A. Malik, "Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens," International Journal of Food Microbiology, 143(3), 205-210 (2010).
93. Tyagi, A. K. and A. Malik, "Bactericidal action of lemon grass oil vapors and negative air ions," Innovative Food Science & Emerging Technologies, 13(169-177 (2012).
94. Tyagi, A. K., B. K. Nirala, A. Malik and K. Singh, "The effect of negative air ion exposure on Escherichia coli and Pseudomonas fluorescens," Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 43(7), 694-699 (2008).
95. Ulevicius, V., D. Peciulyte, K. Plauskaite and N. Spirkauskaite, "Resistance of Airborne Fungal Propagules to Ultraviolet Irradiation: Laboratory Study," Lithuanian Journal of Physics, 48(3), 265-273 (2008).
96. Umweltbundesamt, "Health and Environmental Hygiene Guide values for Indoor Air Quality," German Federal Environment Agency, Germany (2013) Retrieved from http://www.umweltbundesamt.de/gesundheit-e/innenraumhygiene/richtwerte-irluft.htm
97. USEPA, "Ground Level Ozone: Health Effects," USEPA, United States (2012) Retrieved April 28, 2013, from http://www.epa.gov/glo/health.html
98. USEPA, "Laws & Regulations: Indoor Air," USEPA, United States (2013) Retrieved March 18, 2013, from http://www.epa.gov/lawsregs/topics/air.html#indoorair
99. Vandenbrouckegrauls, C. M. J. E., K. B. Teeuw, K. Ballemans, C. Lavooij, P. B. Cornelisse and J. Verhoef, "Bacterial and Viral Removal Efficiency, Heat and Moisture Exchange Properties of 4 Filtration Devices," Journal of Hospital Infection, 29(1), 45-56 (1995).
100. Vohra, A., D. Y. Goswami, D. A. Deshpande and S. S. Block, "Enhanced photocatalytic disinfection of indoor air," Applied Catalysis B-Environmental, 64(1-2), 57-65 (2006).
101. Walker, C. M. and G. Ko, "Effect of ultraviolet germicidal irradiation on viral aerosols," Environmental Science & Technology, 41(15), 5460-5465 (2007).
102. Wang, Z., T. Reponen, S. A. Grinshpun, R. L. Gorny and K. Willeke, "Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection," Journal of Aerosol Science, 32(5), 661-674 (2001).
103. Washam, C. J., C. H. Black, W. E. Sandine and P. R. Elliker, "Evaluation of Filters for Removal of Bacteriophages from Air," Applied Microbiology, 14(4), 497-& (1966).
104. Weinmayr, G., U. Gehring, J. Genuneit, G. Buchele, A. Kleiner, R. Siebers, K. Wickens, J. Crane, B. Brunekreef and D. Strachan, "Dampness and moulds in relation to respiratory and allergic symptoms in children: results from Phase Two of the International Study of Asthma and Allergies in Childhood (ISAAC Phase Two)," Clinical & Experimental Allergy, (2013).
105. Windler, L., M. Height and B. Nowack, "Comparative evaluation of antimicrobials for textile applications," Environment International, 53(62-73 (2013).
106. Wu, C. C. and G. W. M. Lee, "Oxidation of volatile organic compounds by negative air ions," Atmospheric Environment, 38(37), 6287-6295 (2004).
107. Wu, P. C., H. J. Su and C. Y. Lin, "Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons," Science of the Total Environment, 253(1-3), 111-118 (2000).
108. Wu, P. C., J. C. Tsai, F. C. Li, S. C. Lung and H. J. Su, "Increased levels of ambient fungal spores in Taiwan are associated with dust events from China," Atmospheric Environment, 38(29), 4879-4886 (2004).
109. Xiu, Z. M., J. Ma and P. J. J. Alvarez, "Differential Effect of Common Ligands and Molecular Oxygen on Antimicrobial Activity of Silver Nanoparticles versus Silver Ions," Environmental Science & Technology, 45(20), 9003-9008 (2011).
110. Xiu, Z. M., Q. B. Zhang, H. L. Puppala, V. L. Colvin and P. J. J. Alvarez, "Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles," Nano Letters, 12(8), 4271-4275 (2012).
111. Xu, P., J. Peccia, P. Fabian, J. W. Martyny, K. P. Fennelly, M. Hernandez and S. L. Miller, "Efficacy of ultraviolet germicidal irradiation of upper-room air in inactivating airborne bacterial spores and mycobacteria in full-scale studies," Atmospheric Environment, 37(3), 405-419 (2003).
112. Xu, Z. Q., Y. Wu, F. X. Shen, Q. Chen, M. M. Tan and M. S. Yao, "Bioaerosol Science, Technology, and Engineering: Past, Present, and Future," Aerosol Science and Technology, 45(11), 1337-1349 (2011).
113. Yang, X. Y., A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim and J. N. Meyer, "Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans," Environmental Science & Technology, 46(2), 1119-1127 (2012).
114. Yeo, H. G. and J. H. Kim, "SPM and fungal spores in the ambient air of west Korea during the Asian dust (Yellow sand) period," Atmospheric Environment, 36(35), 5437-5442 (2002).
115. Yoon, K. Y., J. H. Byeon, C. W. Park and J. Hwang, "Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers," Environmental Science & Technology, 42(4), 1251-1255 (2008).
116. Yu, K. P., G. W. M. Lee, Z. Y. Lin and C. P. Huang, "Removal of bioaerosols by the combination of a photocatalytic filter and negative air ions," Journal of Aerosol Science, 39(5), 377-392 (2008).
117. Yu, S. J., J. B. Chao, J. Sun, Y. G. Yin, J. F. Liu and G. B. Jiang, "Quantification of the Uptake of Silver Nanoparticles and Ions to HepG2 Cells," Environmental Science & Technology, 47(7), 3268-3274 (2013).
118. Yun, S. J. and Y. Seo, "Removal of bacteria and odor gas by an alumina support catalyst and negative air ions," Journal of Aerosol Science, 58(0), 33-40 (2013).
119. Zhang, X., B. Sahlberg, G. Wieslander, C. Janson, T. Gislason and D. Norback, "Dampness and moulds in workplace buildings: Associations with incidence and remission of sick building syndrome (SBS) and biomarkers of inflammation in a 10 year follow-up study," Science of the Total Environment, 430(75-81 (2012).
120. Zhao, J. and X. D. Yang, "Photocatalytic oxidation for indoor air purification: a literature review," Building and Environment, 38(5), 645-654 (2003).
121. Zoutman, D., M. Shannon and A. Mandel, "Effectiveness of a novel ozone-based system for the rapid high-level disinfection of health care spaces and surfaces," American Journal of Infection Control, 39(10), 873-879 (2011).
122. 中國國家環境保護總局, "中華人民共和國國家標準," GB/T 18883-2002, 中國 (2002).
123. 台灣環保署, 室內空氣品質建議值, 行政院環保署, 台灣, (2005).
124. 台灣環保署, 室內空氣品質管理法, 行政院環保署, 台灣, (2011).
125. 吳致呈, "空氣負離子控制室內空氣污染物之研究," 博士學位論文, 環境工程學研究所, 國立臺灣大學, 臺灣 (2006).
126. 厚生労働省, "建築物環境衛生管理基準について," 厚生労働省, 日本 (2003) Retrieved April 18, 2013, from http://www.mhlw.go.jp/bunya/kenkou/seikatsu-eisei10/
127. 厚生労働省, "シックハウス(室内空気汚染)問題に関する検討会の開催について," 厚生労働省, 日本 (2012) Retrieved April 17, 2013, from http://www.mhlw.go.jp/stf/shingi/2r9852000002kunp-att/2r9852000002kuwj.pdf
128. 蕭儀禎, "壁面貼附材料與空氣負離子對室內生物氣膠控制效率的影響," 碩士學位論文, 環境工程學研究所, 國立臺灣大學, 臺灣 (2012).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔